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ABSTRACT The hydrodynamic properties of rigid particles are calculated from models composed of spherical elements
(beads) using theories developed by Kirkwood, Bloomfield, and their coworkers. Bead models have usually been built in such
a way that the beads fill the volume occupied by the particles. Sometimes the beads are few and of varying sizes (bead
models in the strict sense), and other times there are many small beads (filling models). Because hydrodynamic friction takes
place at the molecular surface, another possibility is to use shell models, as originally proposed by Bloomfield. In this work,
we have developed procedures to build models of the various kinds, and we describe the theory and methods for calculating
their hydrodynamic properties, including approximate methods that may be needed to treat models with a very large number
of elements. By combining the various possibilities of model building and hydrodynamic calculation, several strategies can
be designed. We have made a quantitative comparison of the performance of the various strategies by applying them to some
test cases, for which the properties are known a priori. We provide guidelines and computational tools for bead modeling.

INTRODUCTION

Because of the great number and variety of intramolecular
interactions that exist, biological macromolecules fre-
quently have strongly preferred, practically unique, confor-
mations. As a consequence, in solution, they behave as rigid
particles with a well-defined, specific shape. Simple geo-
metric models, such as spheres, ellipsoids, or cylinders can,
in some cases, be used to describe the solution properties,
when the overall shape is almost symmetric and one accepts
a low-resolution description. However, there are many sit-
uations in which simple models are inadequate, and others
in which one wishes to study fine structural details.

The problem of predicting the hydrodynamic properties
(sedimentation and diffusion coefficients, relaxation times,
intrinsic viscosity) of rigid macromolecules or particles of
arbitrarily complex shape was faced in the pioneering works
of Bloomfield et al. (1967a,b). These authors worked within
the framework of the Kirkwood–Riseman theory of macro-
molecular hydrodynamics (Kirkwood, 1954; Riseman and
Kirkwood, 1956), which had been initially applied to very
simple models of identical elements (Riseman and Kirk-
wood, 1950), and devised procedures for calculating the
properties for models composed of equal or unequal spher-
ical elements (beads). Some approximations contained in
the early bead model treatments (mainly related to the
hydrodynamic interaction effect) that came from the origi-
nal Kirkwood–Riseman theories were removed in subse-
quent works (McCammon, 1976; Garcı´a de la Torre and
Bloomfield, 1977a,b, 1978; Nakajima and Wada, 1977;

Swanson et al., 1978). In these studies, the nonpointlike
nature of the beads was accounted for in the description of
hydrodynamic interactions by means of modified-Oseen
tensors (Rotne and Prager, 1969; Yamakawa, 1970; Garcı´a
de la Torre and Bloomfield, 1977a), whereas the total fric-
tional forces at each element, from which the properties are
computed, were assumed to act at the bead centers. Such a
situation is unimportant for models with many small beads,
but has a noticeable effect when bead size is close to the
overall size of the particle (Garcı´a de la Torre and Bloom-
field, 1978; Wilson and Bloomfield, 1979). This deficiency
was corrected in later works (Garcı´a de la Torre and Rodes,
1983; Garcı´a de la Torre, 1989; Garcı´a de la Torre and
Carrasco, 1998). Some reviews on theory and applications
of rigid bead models are available (Teller et al., 1979;
Garcı́a de la Torre and Bloomfield, 1981; Garcı´a de la
Torre, 1981, 1989, 1992).

Different points of view can be adopted in the construc-
tion of bead models for a given particle. In a straightforward
approach, one would fill the particle with spherical ele-
ments, the only requirement being that the size and shape of
the resulting model should be as close as possible to that of
the particle. Small, finely shaped details can be properly
modeled if one uses a great number of beads of varying size.
As will be shown below, this approach works well enough
when the hydrodynamic treatment of the model rigorously
describes the hydrodynamic interactions. Another alterna-
tive for bead modeling is the Bloomfield shell-model ap-
proach. As hydrodynamic resistance takes place on the
surface of the particle, Bloomfield et al. (1967a) and Filson
and Bloomfield (1967) proposed modeling the particle as a
shell of small, identical beads. The calculated properties
should converge to the exact values as the bead size is
decreased, with a subsequent increase in the number of
beads,N.

In the rigorous bead-model treatments, the frictional
forces are obtained as the solutions of systems of 3N linear
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equations. Accordingly, the required computer time is pro-
portional toN3, and increases greatly withN. This conflicts
with the need to use many beads for the reproduction of fine
structural details, or for building shell models. In the clas-
sical Kirkwood–Riseman theory, approximations in the
treatment of hydrodynamic interaction lead to simple equa-
tions in which the hydrodynamic properties are computed
from double sums over the elements. This requires a number
of operations of the order ofN2, so that the computer time
needed for highN is much smaller than for the rigorous
treatments.

This conflict between the wish for high-resolution or
shell models, the computing time required for rigorous
calculation, and the errors that approximate calculation will
introduce is another motivation of the present study. From
the preceeding considerations, it seems important that
model building and hydrodynamic treatments should be
discussed jointly. Approximate methods may be the most
suitable choice for models with many beads, although their
performance will depend not only on the shape of the
particle (Garcı´a de la Torre et al., 1983), but also on which
kind of bead model is used.

The outline of this paper is as follows. In the next section,
we summarize the basic theory of bead modeling, including
both the rigorous and the approximate equations (such a
summary is helpful because even the latest reviews are now
somehow outdated). In the third section, we proceed with
the essential aspect of this paper, namely the description and
differentiation of the various procedures that can be used for
model building: bead, filling, and shell modeling. The com-
bination of the two theoretical approaches, rigorous and
approximate, with the various modeling procedures gives
rise to a variety of computational strategies. In the next
section of this paper, we test the various strategies, applying
them to simple model particles, for which almost exact
results are already available, including the sphere and ellip-
soids of varying axial ratios. We also consider a typical
application of this type of modeling, studying properties of
oligomeric arrays of globular subunits. The procedures for
model building and hydrodynamic computations have been
implemented in computer programs that will be of public
domain, freely downloaded from our Internet site. These
programs are listed and succinctly described in the last
sections of this paper.

THEORY AND COMPUTATIONAL PROCEDURES

Basic theory: Rigorous methods

The theoretical foundations of the hydrodynamic calcula-
tions necessary for bead models have been described in a
series of publications (Garcı´a de la Torre and Bloomfield,
1977a, 1978, 1981; Garcı´a de la Torre and Rodes, 1983;
Garcı́a Bernal and Garcı´a de la Torre, 1980; Garcı´a de la
Torre, 1989). Because a succinct and complete summary of
the results can only be found in some specialized publica-
tions (Garcı´a de la Torre, 1989; Garcı´a de la Torre et al.,

1994; Navarro et al., 1995), we present here an up-to-date,
compact summary of the theory, at the same time introduc-
ing the quantities and notation that will be used in the
following sections of this paper.

For a particle of arbitrary shape, the hydrodynamic resis-
tance is expressed by means of a 63 6 resistance or friction
tensor,J. Similarly, the Brownian diffusivity is expressed
by a 6 3 6 diffusion matrix, $, which is related toJ
through the generalized Einstein relationship,$ 5 kTJ21.
Both J and $ can be partitioned in 33 3 blocks, which
correspond to translation (tt), rotation (rr ) and translation–
rotation coupling (tr), so that

$ 5 S Dtt Dtr
T

Dtr Drr
D 5 kTS Jtt Jtr

T

Jtr Jrr
D21

. (1)

The superscript T indicates transposition. From thett block,
the translational diffusion and friction coefficients are given
by

Dt 5 1⁄3Tr~Dtt!, (2)

ft 5 kT/Dt , (3)

where Tr is the trace of the tensor. Similarly, the five
rotational relaxation times,tk(k 5 1, . . . , 5), arecalculated
from the eigenvalues of theDrr tensor, that we simply
represent asD1, D2, andD3. The reciprocals of thet9k values
are given by

1/t1 5 6Dr 2 2D, (4)

1/t2 5 3~Dr 1 D1!, (5)

1/t3 5 3~Dr 1 D2!, (6)

1/t4 5 3~Dr 1 D3!, (7)

1/t5 5 6Dr 1 2D, (8)

where

Dr 5 1⁄3~D1 1 D2 1 D3! (9)

and

D 5 ~D1
2 1 D2

2 1 D3
2 2 D1D2 2 D1D3 2 D2D3!

1/2. (10)

These relaxation times determine the time (or frequency)
dependence in dynamic electrooptical or spectroscopic
properties, including electric birefringence and dichroism
decays, fluorescence anisotropy decay, and nuclear mag-
netic resonance relaxation. The way in which theti values
enter in the calculation of those properties has been de-
scribed elsewhere (Garcı´a de la Torre et al., 1997, 1999).

Sometimes, rotational dynamics is characterized in terms
of just one relaxation time,t0, which is the harmonic mean
of the five ti values (Garcı´a de la Torre et al., 1997)

th
21 5

1

5 O
i51

N

ti
21. (11)
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It can easily be seen thatth is related to the trace ofDrr,

th 5
1

6Dr
5

fr
6kT

, (12)

whereDr 5 1⁄3 Tr(Drr) and fr 5 kT/Dr.
The 63 6 diffusion tensor$, and particularly thett and

tr blocks, depend on the origin to which they refer. The
proper choice is the so-called center of diffusion,D (Harvey
and Garcı´a de la Torre, 1980), which coincides with the
symmetry center for a centrosymmetric particle. Otherwise,
$ is first calculated at some arbitrary origin,O, and then the
position vector ofD with respect toO is calculated as

rOD 5 S xOD

yOD

zOD

D
5 S Drr

yy 1 Dr
zz 2Drr

xy 2Drr
xz

2Drr
xy Drr

xx 1 Dr
zz 2Drr

yz

2Drr
xz 2Drr

yz Drr
yy 1 Drr

xx
D21S Dtr

yz 2 Dtr
zy

Dtr
zx 2 Dtr

xz

Dtr
xy 2 Dtr

yx
D,

(13)

and finally the blocks of$ are recalculated atD. For thett
block, the transformation is

Dtt,D 5 Dtt,O 2 UOD z Drr z UOD 1 Dtr
T z UOD 2 UOD z Dtr ,

(14)

where

UOD 5 S 0 2zOD yOD

zOD 0 2xOD

2yOD xOD 0
D. (15)

The theory of hydrodynamic properties of bead models
provides a procedure to calculate the components ofJ. A
key concept in bead model hydrodynamics is the hydrody-
namic interaction effect. The frictional force experienced by
a bead depends not only on its relative velocity and its
friction coefficient, but also on the frictional forces that act
at all the other beads. From the Cartesian coordinates and
radii of theN beads in the model, the 33 3 hydrodynamic
interaction tensors between beadsi and j, T ij (i, j 5 1, . . . ,
N) are calculated. This tensor was originally formulated by
Oseen as

T ij 5 ~8ph0Rij!
21~I 1 RijRij /Rij

2!, (16)

where I is the unit tensor andRij is the distance vector
between elementsi andj. In the derivation of Eq. 16, it was
implicitly assumed that the size of the elements is much
smaller thanRij . Rotne and Prager (1969) and Yamakawa
(1970) derived a new expression valid for interacting ele-
ments of equal size, which was later generalized by Garcı´a
de la Torre and Bloomfield (1977a) for elements of different

radii, si andsj,

T ij 5 ~8ph0Rij!
21SI 1

RijRij

Rij
2 1

si
2 1 sj

2

Rij
2 S13 I 2

RijRij

Rij
2 DD.

(17)

This equation is only valid ifRij $ si 1 sj. Otherwise,
beadsi andj overlap and if they have the same radius,s, the
expression forT ij is (Rotne and Prager, 1969)

T ij 5
1

6ph0s
SS1 2

9

32

Rij

s DI 1
3

32

RijRij

Rijs
D. (18)

Now we define a 3N 3 3N supermatrix@ composed of
3 3 3 blocks:

Bij 5 T ij if i Þ j, (19)

Bii 5 ~1/zi!I , (20)

where

zi 5 6ph0si (21)

is the Stokes’ law friction coefficient of beadi, with radius
si, h0 being the viscosity of the solvent. This supermatrix is
then inverted to obtain a 3N 3 3N supermatrix,

# 5 @21, (22)

that is partitioned in 33 3 blocks,Cij , which in turn gives
the components ofJ as

Jtt 5 O
i

O
j

Cij , (23)

Jtr 5 O
i

O
j

Ui z Cij , (24)

Jrr
uncorr5 O

i

O
j

Ui z Cij z Uj (25)

where

Ui 5 S 0 2zi yi

zi 0 2xi

2yi xi 0
D. (26)

From theCij tensors, the intrinsic viscosity can be calcu-
lated directly. First, a particular point that is called the
viscosity center has to be located. The procedure is simple,
but the corresponding equations are lengthy and the reader
is referred to Garcı´a de la Torre and Bloomfield (1978).
Then, the coordinatesr9i

a(a 5 x, y, z) are calculated with
that origin, and the intrinsic viscosity is given by:

@h#uncorr5
NA

Mh0
O
i

O
j
S 1

15 O
a

r9i
a Cij

aa r9j
a

1
1

20 O
aÞ

O
b

r9i
a Cij

ba r9j
b 2

1

30 O
aÞ

O
b

r9i
a Cij

ab r9j
b

1
1

20 O
aÞ

O
b

r9i
a Cij

bb r9j
bD, (27)
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whereNA is Avogadro’s number andM is the molecular
weight of the macromolecule.

Summarizing, the computational route is as follows: from
the Cartesian coordinates and radii of beads, we calculate
the T ij tensors (Eq. 17) and build the@ supermatrix (Eqs.
19, 20), which is inverted (Eq. 22) to obtain#. The com-
ponents ofJ are calculated from Eqs. 23–25. Then,J is
inverted to obtain$, which is partitioned into four 33 3
blocks, from which the translational and rotational proper-
ties are calculated from Eqs. 2–10.

In Eqs. 25 and 27, for rotation and viscosity, respectively,
the subscript uncorr stands for uncorrected, in the sense that
the so-called volume corrections are not yet included, and
therefore results from them may suffer from the deficiencies
mentioned in the Introduction. These corrections will be
described below.

The hydrodynamics of the arbitrarily shaped rigid particle
simplifies for the case of axisymmetric particles, which is
also the case of the test particles used in the numerical
calculations that we report later. When referring to the main
axes of an axisymmetric particle, the translational and ro-
tational tensors are diagonal. Thus,Jtt only has the diagonal
componentsft

' [ f t
(x) 5 f t

(y) and f t
i 5 f t

(z) wherez is the
symmetry axis. Similarly, we have componentsfr

' andf r
i for

Jrr, Dt
' and Dt

i for Dtt and Dr
' and Dr

i for Drr. Individual
Einstein relationships,D 5 kT/f, hold for any of these
components (for instanceDr

i 5 kT/f r
i). At this point, the

friction and diffusion tensors refer to the center of diffusion
calculated as described above for the general case. In many
practical instances, the particle has a center of symmetry
with which the hydrodynamic center should coincide. In
this case, the Cartesian axes can be centered on it, so that
evaluation of the center of diffusion (Eq. 13) and subsequent
translation of the hydrodynamic tensors is not necessary.
Finally, of the five relaxation times (Eq. 4–8), there are
only three distinct values given by

ta 5 ~6Dr
'!21 5 fr

'/~6kT!, (28)

tb 5 ~5Dr
' 1 Dr

i!21 5 @kT~5/fr
' 1 1/f r

i!#21, (29)

tc 5 ~2Dr
' 1 4Dr

i!21 5 @kT~2/fr
' 1 4/f r

i!#21, (30)

and the harmonic mean relaxation time is given by Eq. 12
with

1

fr
5

~2/fr
' 1 1/f r

i!

3
, (31)

andDr 5 (2Dr
' 1 Dr

i).
The rotational diffusion of macromolecules is detected by

the time or frequency dependence of electrooptic or spec-
troscopic properties, such as electric birefringence and di-
chroism, fluorescence anisotropy and nuclear magnetic res-
onance. The time functions can be calculated by combining
the rotational quantities (Dr and thetk) and the physical
quantities corresponding to each property, as described else-
where (Garcı´a de la Torre et al., 1997, 1999).

Basic theory: Approximate methods

Since the pioneering work of Kirkwood, (Kirkwood, 1954;
Kirkwood and Riseman, 1948), it has been known that
hydrodynamic properties can be calculated by means of
approximate, simple formulas that, at the cost of some error
in the numerical results, offer the great advantage of having
much smaller computational requirements. All these ap-
proximate equations involve just a double sum, over pairs of
beads, of a simple term, which depends on the interbead
distances and the bead friction coefficient or radii.

The paradigmatic case is Kirkwood’s formula (Kirk-
wood, 1954) forft (or Dt 5 kT/ft) modified by Bloomfield et
al. (1967a) for unequal beads,

ft 5

O
i51

N
zi

1 1 ~6ph0 O
i51

N
zi!

21 O
iÞ

N O
j

N
zizjr ij

21
. (32)

For rotation, similar formulas for individual coefficients
(Hearst, 1962) have been generalized to calculate the full
rotational friction tensor (Garcı´a de la Torre et al., 1987).
The result is

Jrr
uncorr5 ~Auncorr

21 1 Auncorr
21 z B z Auncorr!

21 (33)

or

Dr
uncorr5 kT~Auncorr

21 1 Auncorr
21 z B z Auncorr!, (34)

where

Auncorr5 2O
i51

N

ziUi z Ui , (35)

and

B 5 2O
iÞ

N O
j

N

zizjUi z T ij z Uj , (36)

where theUi matrices are given by Eq. 26. The bead
positions refer to an approximate hydrodynamic center,A,
given by

rOA 5 O zir iYO
i

zi . (37)

Finally, for the intrinsic viscosity, we adopt the expres-
sion of Tsuda (1970a,b).

@h#uncorr5
NAp

M SO
i

siRi
2D

z F1 1
1

Oi siRi
2

3

4 SO
iÞ

O
j

sisjSRiRjcosaij

Rij

1
4~Ri

2 1 Rj
2!RiRjcosaij 2 Ri

2 Rj
2~1 1 7 cos2aij!

10Rij
3 DG.

(38)
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Further details, such as particular expressions for axisym-
metric particles, or a performance analysis for various typ-
ical models, are described elsewhere (Garcı´a de la Torre et
al., 1983, 1987).

Volume correction for rotation and
intrinsic viscosity

It was soon clear that the rotational friction calculated from
Eq. 25 or 33, and the intrinsic viscosities calculated from
Eq. 27 or Eq. 38, are in some way erroneous when applied
to models in which one or a few spheres have a size close
to that of the whole particle. Actually, for a single sphere,
these equations give the erroneous resultsJrr

uncorr 5 0 and
[h]uncorr 5 0 instead of the Kirchoff and Einstein expres-
sions. Wilson and Bloomfield (1979) proposed a modeling
strategy in which each bead in the model is replaced by a
cubic array, and the procedure has been successfully used in
other works (Garcı´a Bernal and Garcı´a de la Torre, 1981;
Allison and McCammon, 1984). The evident drawback is
that, as the number of elements increases by a factor of 8,
the computing time of the rigorous procedure increases by
83 5 512. This is unimportant for bead models with a few
subunits [for instance for oligomeric arrays of spheres (Gar-
cı́a Bernal and Garcı´a de la Torre, 1981)] but it may pose a
serious problem for other types of model.

With this problem in mind, Garcı´a de la Torre and Rodes
(1983) developed (from rigorous hydrodynamics) a simple,
additive correction for the rotational friction tensor, that was
successfully tested in various cases. The so-called volume
correction for the rotational properties is an additive contri-
bution to the diagonal components of the rotational friction
tensor,

Jrr 5 Jrr
uncorr1 6h0VI , (39)

whereI is the unitary tensor,h0 is the solvent viscosity and
V is the volume of the model, equal to

Vm 5
4

3
p O

i51

N

si
3, (40)

where thesi are the individual bead radii.
For the intrinsic viscosity, a similar correction is possible.

That possibility was hinted at in a preliminary publication
(Garcı́a de la Torre, 1989) and included in the HYDRO
computer program (Garcı´a de la Torre et al., 1994). In a
recent work, we have provided the theoretical justification
and tested the correction in various instances (Garcı´a de la
Torre and Carrasco, 1998). As in the case of rotational
friction, the correction consists of adding a simple term,

@h# 5
5NAVm

2M
1 @h#uncorr. (41)

We recall thatV is the total volume of the bead model,
understood as the sum of the volumes of all the spheres.

This must be kept in mind when using shell-type models
(see below), in which the particle’s volume is not filled by
beads. A frequent situation is that of models composed of
identical spheres. In such a case, the volume correction for
viscosity reduces to

@h# 5 @h#1 1 @h#uncorr, (42)

where [h]1 5 5NAV1/2M1 is the intrinsic viscosity of a
single bead (monomer) with volumeV1 and molecular mass
M1. This particular result has been reported in previous
works (Bianchi and Peterlin, 1968; Yoshizaki et al., 1988;
Abe et al., 1991).

TYPES OF MODELING

In a general sense, a bead model is any representation of a
particle as an array of spherical frictional elements. In all
cases, individual, Stokes-law friction coefficients,zi, are
assigned to each element, and the hydrodynamic interaction
between them is accounted for by means of the Oseen or
modified Oseen tensors.

However, for any given particle, there are different strat-
egies for building the hydrodynamic bead model. Indeed,
different modeling methods have been used from the very
first works in this field (Bloomfield, 1966; Bloomfield et al.,
1967a,b; Bloomfield and Filson, 1968).

We shall refer hereafter to three different classes denoted
as bead model(in strict sense),shell model, and filling
model(see Figure 1).

Bead model

We shall keep the term bead model, in a strict sense, for a
modeling method in which the particle is represented by as
few beads as possible, identical or different, and occupying
approximately the volume of the particle. The array of beads
should have an envelope that resembles the shape of the
particle as closely as possible. A schematic illustration in
two dimensions is shown in Fig. 1A. Another trivial exam-
ple is a string of colinear spheres as the bead model of a rod.
A classical example of bead modeling is Bloomfield’s
model for T2 bacteriophage (Bloomfield et al., 1967b)
shown in Fig. 2.

Many other examples are described in the literature; one
of the earliest examples being Bloomfield’s model for a
bovine serum albumin (Bloomfield, 1966) or the model for
the T-even bacteriophage, in which the massive head is
represented by just one large sphere, and the rodlike por-
tions by a string of smaller beads (Garcı´a de la Torre and
Bloomfield, 1977c). When modeling elongated structures,
the essential criterion is that the model has the same length
and volume as the particle. This criterion is usually followed
when modeling rods (Hagerman and Zimm, 1982) and has
also been used for the modified ellipsoid model (Garcı´a de
la Torre and Bloomfield, 1977a,b, 1978).
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The above mentioned strategy of cubic substitution (Wil-
son and Bloomfield, 1979; Garcı´a Bernal and Garcı´a de la
Torre, 1981) can be included within the category of bead
modeling, in which one, a few, or all the beads can be
replaced. For instance, for the T2 model in Fig. 2, it is
possible to simply replace the huge bead representing the
phage head. In other models, consisting of few beads of
similar size, all the beads will be replaced. Such would be
the case of the dimeric and oligomeric structures that will be
used later in this paper.

As mentioned above, there is an alternative strategy, the
cubic substitution, which is intended to remove some of the
difficulties involved in rotational and viscosity calculations.
In this procedure, each bead is replaced by a cubic array of
smaller spheres of a radius such that their total volume is the
same as that of the parent sphere.

Shell model

For a compact, solid particle, hydrodynamic friction occurs
actually on its surface. In the case of a real macromolecule
such as a globular protein, this may indeed be the case,
because the interior of the protein is inaccessible to solvent.
Even if the macromolecule is somehow porous or perme-
able to the solvent, the fluid inside it is trapped, moves
along with it, and belongs to the hydrodynamic particle. It is
therefore the particle’s surface that counts.

With this idea in mind, Bloomfield et al. (1967a) and
Filson and Bloomfield (1967) proposed the shell model, in
which the particle’s surface is represented by a shell-like
assemblage of many small, identical frictional elements.
The bead radius,s, can be taken such that neighboring
beads are tangent (although some minor voids and overlaps
are acceptable). The limit of a continuous shell (smooth
surface) is approached by increasing the number of ele-
ments while decreasing the size, and the properties calcu-
lated for the shell will approach the properties of the particle
being modeled. Calculations can be made by varyings, and
the results can be extrapolated to thes 3 0, N3 ` limit.

Examples of shell modeling were given by Bloomfield et
al. for spheres and ellipsoids (Bloomfield et al., 1967a;
Filson and Bloomfield, 1967; Bloomfield and Filson, 1968).
This type of model was also used by Tirado and Garcı´a de
la Torre for calculating properties of short cylinders with a
moderate length-to-diameter ratio (Tirado and Garcı´a de la
Torre, 1979, 1980; Tirado et al., 1984).

A schematic representation of shell modeling is presented
in Fig. 1B. Some procedure has to be developed for placing
the spherical beads (specifying their coordinates) on the
surface, so that each bead is nearly tangent to its neighbors.
One possibility is for the beads also to be tangent to the
inner face of the surface. Alternatively, beads can be cen-
tered on the surface (our choice), or tangent to the outer
face; the small differences among these possibilities must
vanish in the limit of very small bead size. The modeling

FIGURE 1 Two-dimensional analogies of the various model types. (A)
A bead model (in strict sense). (B) Shell model. (C) Filling model. (D)
Rough-shell model.

FIGURE 2 Bloomfield’s bead model for T2 bacteriophage, as proposed
by Bloomfield et al. (1967b).
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procedure is particularly easy for revolution bodies, like
ellipsoids or cylinders, for which beads can be placed at the
parallel circumferences defined by planes perpendicular to
the main symmetry axis. Thus, by stacking rings of beads of
varying ring radius, we can build smooth shell models. An
example is presented in Fig. 3A.

It is evident that the finest details of an irregular, arbitrary
shape can be modeled if one increases the resolution, as
determined by the element radiuss. The adequate compu-
tational procedure consists of repeating the calculations for
models with decreasings, and extrapolating the results to
the shell-model limit,s 3 0. However, this substantially
increases the computing time necessary for calculating the
hydrodynamic properties. The number of elements required
to cover the surface area of the particle,S, is given byN 5
cS/(4ps2), wherec , 1 is some numerical factor according
for the voids between touching spheres. The computer time
grows asN2 or N3, depending on the hydrodynamic method
(approximate or rigorous) used, and it will therefore in-
crease with decreasings ass24 or s26, respectively. As an
orientation for the reader, we give the following computing
times in a Silicon Graphics MIPS R1000 180MHz CPU, for
a structure withN 5 500, about 30 minutes for the rigorous
methods and about 2 seconds for the approximate, double-
sum methods. The approximate methods are much faster,

but, as shown below, they may introduce appreciable errors;
the rigorous hydrodynamics requires much larger, but still
accessible amounts of CPU time.

Filling model and rough-shell model

In an alternative modeling method, the volume occupied by
the particle can be filled by elements, which is the proper
procedure for some properties that depend specifically on
the particle volume. Such is the case for the angular depen-
dence of radiation (light or x-ray) scattering from the par-
ticle. An evident example is the radius of gyration, that
determines the angular dependence at small scattering vec-
tors. In a commonly used procedure for predicting scattering
diagrams, the particle is filled with scattering elements and,
from their coordinates and size (the same information that is
required for hydrodynamics), the scattering structure factor
is calculated using the Debye formula (Muller et al.,
1983a,b; Muller, 1983; Pavlov and Fedorov, 1983; Pavlov
et al., 1986).

The filling model can be programmed as follows. A
portion of a regular lattice is spatially superimposed on the
particle. The dimensions of such a portion are taken as the
maximum dimensions of the particle in three mutually per-
pendicular directions, thus assuring that the whole particle’s
volume is covered by the network. An algorithm specifying
the shape of the particle is required; the task of which will
simply be to decide whether or not a given point in space is
within the particle. This is applied to all the nodes in the
lattice, and model elements are placed at those nodes that
belong to the particle. Here, the elements are beads of radius
s. A simple cubic lattice would suffice, but, for the calcu-
lations reported in this paper, we have preferred a hexago-
nal, closest-packing lattice. A schematic picture of the fill-
ing model is presented in Fig. 1C.

As mentioned above, the filling model is, in principle,
inefficient for hydrodynamic calculations because it in-
cludes internal beads that do not contribute to friction. For
a given particle volume, the number of beads needed to fill
it is N 5 3qV/(4ps3), whereq , 1 is a numerical factor
accounting for the voids between spheres. Thus, the com-
puting time grows dramatically with decreasings ass29 or
s26, for the rigorous and the double-sum calculations, re-
spectively. Furthermore, we shall describe later the compu-
tational deficiencies associated with filling models. How-
ever, such models do have some advantages. For example,
for particles of complex shape, programming is simpler than
with a smooth shell model. In addition, it may be advanta-
geous to use the same model for both scattering and hydro-
dynamic calculations if the properties of both types are
available.

Based on the filling model, an alternative model, which
avoids the hydrodynamic problems but which is still com-
patible with scattering, can be proposed. In such a model,
the innermost beads are simply removed, so that we are left
with a shell model in which the particle surface is described
in a rough manner, with some discontinuities (edges or

FIGURE 3 Shell models for an ellipsoid with axial ratiop 5 4. (A)
Smooth shell. (B) Rough shell.
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corners of the lattice) that will become less important when
the resolution is increased by decreasings. We shall refer to
this as the rough-shell model, which is schematically rep-
resented in Fig. 1D. A model of this type for a revolution
ellipsoid is displayed in Fig. 3B. At the limit whens3 0,
the model converges to the shell model of the smooth
surface. The computing time depends on the number of
beads or the resolution required, just as it does with the
smooth shell model.

The practical implementation of this procedure is ex-
tremely simple. A bead is considered internal when it is
completely surrounded by other beads; the number of beads
that are in touch with it (at a distance equal to 2s) is
maximum, equal to the coordination number of the lattice,
which equals 12 for the hexagonal lattice that we use. In the
modeling protocol, a filling model is first constructed.
Eventually, the radius of gyration and other scattering re-
lated properties can be calculated at this stage. Next, the
beads that, according to this criterion, are internal are re-
moved to obtain the rough-shell model.

RESULTS AND DISCUSSION

In this section, we use models of the various types, to which
we apply both rigorous and approximate hydrodynamic
computation. This is done for simple particles whose hy-
drodynamic properties are perfectly known, and can be
calculated from exact, analytical expressions. The perfor-
mance of the procedures for the different properties can be
expressed in terms of the ratio of the calculated property to
the exact values, or as the percent deviation,

deviation~%! 5 100S property~calc.!

property~exact! 2 1D. (43)

These deviations are to be judged comparatively to the
precision of the experimental methods used to measure the
hydrodynamic properties. Experimental errors and numeri-
cal uncertainties in final values of the properties depend on
a variety of circumstances, but if we say that typical values
are, very roughly, of up to 2% for translation (ultracentrif-
ugation and light-scattering), up to 4% for rotation, and up
to 8% for intrinsic viscosity, the deviations in the modeling
results that would fall below these percentages would be
considered as not relevant (different estimates for the typi-
cal errors would not change the overall conclusions).

We first consider the simplest case of a spherical particle,
and discuss the results in terms of the type of model. Then,
we consider ellipsoidal models, which are useful for show-
ing the errors introduced by the approximate methods,
which are more noticeable for elongated shapes. We also
consider a dimer and some oligomeric structures.

Spherical particles: Shell models versus filling
models, and adequacy of the volume correction

An analysis of the results for the spherical model and those
for different models using a hydrodynamic approach has a

two-fold interest. Apart from the theoretical aspects, the
conclusions can be applied to particles that are compact and
not too elongated, and particularly to globular proteins.

Smooth shell models for a sphere are easily programmed
by stacking rings of beads of varying ring size (in analogy
with parallels on the Earth’s surface). (See Fig. 3). Filling
and rough shell models are extracted from a closest-packing
lattice, as described above. For the three models, calcula-
tions are carried out using both the rigorous procedures and
the approximate formulas summarized above. The calcula-
tions are made for a series of decreasing bead diameters,s,
and the results are extrapolated to zero bead size, using
linear or, in most cases, quadratic extrapolation. For the
rigorous method, the computer time needed restricted the
calculation to models with several hundred beads, whereas
the double-sum formulas could be evaluated for many thou-
sand beads.

Ratios between the calculated translation friction coeffi-
cient of the model and the exact value of a sphere of radius,
a, ft(exact)5 6ph0a, are presented in Fig. 4. It is clear that
both smooth and rough shell models give the exact result at
the limit of zero bead size. The extrapolated values for the
approximate methods are as good as those from the rigorous
procedure. For the filling model, the rigorous calculations
extrapolate to the correct result, whereas the approximate
method fails remarkably in this case.

A similar analysis can be made for the rotational friction
coefficient, whose exact value for a sphere is given by
fr(exact) 5 8ph0a

3 5 6h0Vp, where Vp is the sphere’s
volume. Again, we note that the approximate results extrap-
olate correctly to the same limit as the rigorous results (see
Fig. 5). For rotation, we can choose whether or not to
include the volume correction. In Fig. 5 (top), one can
appreciate the effect of the volume correction for the shell
model. For discretes, the corrected results are somewhat
higher than the uncorrected (the correction is positive). The
influence of the volume correction superimposes on the
effects of the modeling procedure and finite bead size, and
the resulting ratios are more or less close to unity, depend-
ing on the case. However, at the shell-model limit, the
correction vanishes, and both corrected and uncorrected
results converge to the exact value. This is quite simple to
understand. If the surface area of the particle,S, is covered
by nearly touching beads of radiuss, their number will be
N 5 cS/(4ps2), where c is some numeric constant that
accounts for the voids between tangent spheres. The total
volume of theN beads will then beVm 5 cSs/3 (we recall
that Vm in Eqs. 37 and 40 is the volume of the model, not
that of the particle). Therefore, as the bead size is decreased,
i.e.,s3 0, we haveVm3 0; in other words, the correction
vanishes at the limit of an infinitely thin shell. This argu-
ment is not exclusive of the spherical geometry; rather, it
can be generalized to particles of arbitrary shape.

In Fig. 5 (bottom), we display rotational results for the
filling model. It is evident that only the rigorous results,
without the volume correction, are adequate. It has already
been mentioned that internal beads are hydrodynamically
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shielded and cannot contribute to the hydrodynamic prop-
erties because they do not experience friction. When rigor-
ous hydrodynamic interaction is used, the shielding effect is
accounted for properly [see Garcı´a de la Torre and Bloom-
field (1977a) and Schmitz (1977)] and internal beads do not
contribute. Therefore, the inclusion of internal beads in the
filling model is not reflected in the results. However, if the
hydrodynamic interaction is described in an approximate
fashion, shielding is incomplete and the internal beads pro-
vide a nonzero, incorrect contribution that makes the results
worse, which is why the approximate methods give errone-
ous limits for the filling model (see Figs. 4 and 5 (bottom)).

The inclusion of volume correction in the filling model
adds further errors. It is clear from Fig. 5 (bottom) that the
results are about twice the exact ones. This can be explained
as follows. Thef r

uncorr values for shell models, and for the
filling model with rigorous hydrodynamics, are already
exact without the volume correction, as justified above. The
volume of the filling model,Vm is a fraction close to 1 of the

volume of the particle,Vp; for the closest-packing construc-
tion, the fractionq 5 Vm/Vp is q 5 0.74. Then the total
result for the corrected coefficient is found to befr 5 (1 1
q)6h0Vp, and the ratio to the exact value is 11 q 5 1.74,
with an error of 74%, which coincides very well with that
found numerically from Fig. 5 (bottom). The same kind of
reasoning can be applied to a particle of any shape. There-
fore, it is clearly demonstrated that the volume correction is
inadequate for filling models.

Numerical work analogous to that for rotation has been
done for viscosity, using the rigorous and approximate
procedures for the three types of model. The calculated-to-
exact ratios follow the same trend as for rotation. In fact, the
corresponding curves are very similar to Figs. 4 and 5 and
are not reproduced here. In summary, the effects of model-
ing procedure, hydrodynamic treatment, and volume correc-
tion are the same as for rotational diffusion.

The conclusions from this study of the spherical particle
will be listed and summarized along with those from other

FIGURE 4 Ratios between the calculated translation friction coefficient
of the model,ft, and the exact value of the sphere.

FIGURE 5 Ratios between the calculated translation friction coefficient
of the model,fr, and the exact value of the sphere.
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models at the end of this paper. We simply remark that the
use of filling models should be avoided and that the volume
correction is unnecessary for shells. Thus, both strategies
will be discarded in the study of the following models.

Dimer

A simple model for which nearly exact, theoretical results
are available is the dimer, which is composed of two touch-
ing spheres. The most interesting situation is when the two
spheres are of the same size; because this is when the
difference in hydrodynamic behavior from that of a spher-
ical particle is greatest.

For the dimer of identical spheres, practically exact re-
sults are available for translational coefficients (Swanson et
al., 1978; Goldman et al., 1966), rotational coefficients
(Davis, 1969), and intrinsic viscosity (Wakiya, 1971; Bren-
ner and O’Neil, 1972). For translation and rotation, both the
coefficients associated to the center-to-center line (parallel)
and a perpendicular axes are available. The overall transla-
tional coefficient isft 5 1/(1/f t

i 1 2/ft
'), and an analogous

expression gives the rotational coefficientfr, which is re-
lated to the mean harmonic relaxation time. We have ap-
plied our diverse modeling and computational strategies to
the dimer, using the various strategies, including the smooth
shell model depicted in Fig. 6. The results for the various
hydrodynamic properties are listed in Table 1.

In bead modeling, the volume correction seems to im-
prove the rotational calculation, especially rotation along
the center-to-center axis. However, the performance is best,
with results extremely close to the exact ones, when the
cubic substitution is used. With shell models, the results that
we obtain with the smooth-shell and rigorous calculations
are excellent, with deviations from the exact ones of about
1% for most properties.

If the shell model is calculated with the approximate
hydrodynamics, the results for translation, parallel rotation,
and intrinsic viscosity show departures of about 5% from

the exact results. These departures are larger than the un-
certainties associated to the extrapolations, which indicates
that the approximate methods introduce some errors, albeit
not large, in this case.

Ellipsoids

The hydrodynamic properties of revolution ellipsoids, with
semiaxesb, b, anda, and axial ratiop 5 a/b are known from
exact formulas (Perrin, 1936; Simha, 1940). The ellipsoid
has therefore been used since the earliest studies (Bloom-
field et al., 1967a; Filson and Bloomfield, 1967; Garcı´a de
la Torre and Bloomfield, 1977a, 1978) as a benchmark for
testing modeling and computational strategies for non-
spherical particles. Our main purpose now is to test the shell
modeling procedures, although, for the sake of complete-
ness, we will also summarize previous results for bead
models.

Bead modeling of prolate ellipsoids has been described in
detail in a series of publications. For a prolate ellipsoid, the
bead models consists of a string of colinear, touching beads,
with sizes decreasing from the center toward the ends; the
beads are inwardly tangent to the surface of the ellipsoid
(Bloomfield et al., 1967a). Using the rigorous hydrodynam-
ics, it was shown that the properties of long prolate ellip-
soids were accurately predicted for a volume-equalized
bead model (Garcı´a de la Torre and Bloomfield, 1977a,
1978). This illustrates one of the key criteria for bead
modeling: for elongated shapes, the bead model must re-
produce both the length and the volume of the particle. In
contrast, forp close to 1, the models failed to predict
rotational coefficients and intrinsic viscosity. More recently,
it has been shown that the introduction of the volume
corrections (Eq. 39–41) removes this deficiency and gives
a reasonably good prediction of the properties over the
whole range of axial ratios. For more details, see our recent
publication on the volume correction (Garcı´a de la Torre
and Carrasco, 1998). In contrast, bead models of ellipsoids
have also been used to test the approximate hydrodynamics
with worse results: the rotational coefficients and the intrin-
sic viscosity for highp are in error by 15–25% (Garcı´a de la
Torre and Bloomfield, 1978; Garcı´a de la Torre et al.,
1987).

In the present study, we have constructed both smooth
and rough shell models for ellipsoids, examples of which
are displayed in Fig. 3. We first consider the results for
translational diffusion coefficient,ft. In Fig. 7A we note
that, in all four cases, the deviations oscillate about zero,
and the average absolute deviation is smaller than 2%. The
performance of the smooth shell model with rigorous hy-
drodynamics is particularly excellent with the small fluctu-
ations most probably attributable to the extrapolations. We
therefore conclude that the shell-modeling predicts theft of
ellipsoids correctly, even with approximate hydrodynamics.
A similar analysis of the intrinsic viscosity [h] result leads
to the results displayed in Fig. 7B. The errors from rigorousFIGURE 6 Smooth-shell model for a dimer of identical spheres.
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hydrodynamics still fluctuate about zero, although their
absolute values are larger than those obtained forft, with an
average of 2–3%. In contrast, the results from the approx-

imate formula show a systematic error of close to 10%. We
conclude that the rigorous method gives the correct [h] for
the shell models of ellipsoids, whereas the approximate
double sum does not. It is interesting to note that the error
of the approximate method for the shell model of the ellip-
soids is very similar to that found earlier with beads models
(Garcı́a de la Torre and Bloomfield, 1978).

As described in subsection Basic theory: Rigorous meth-
ods, the rotational dynamics can be characterized in terms of
different quantities. For the presentation of data in Fig. 7C,
we have chosen the mean rotational friction coefficient (Eq.
31), which is related to the harmonic mean of the relaxation
times (Eq. 12). The errors forfr in the four cases show no
systematic trend. The fluctuation due to extrapolation and
model imperfections are larger than those for the other two
properties although the average error is around zero. Similar
plots (not shown) for other rotational quantities show the
same situation, which leads us to conclude that the rota-
tional quantities of ellipsoids are predicted correctly with
both rigorous and approximate hydrodynamics. This is in
agreement with a result with bead models of a rod, for
which the rotational coefficient from the approximate
method is correct at high aspect ratio (Garcı´a de la Torre et
al., 1987).

OLIGOMERIC STRUCTURES

Oligomeric structures, in which a few elements are arrayed
in a polygonal or polyhedral array, are typical examples of
bead modeling (Bloomfield and Filson, 1968; Garcı´a de la
Torre and Bloomfield, 1978; Garcı´a Bernal and Garcı´a de la
Torre, 1981).

For more compact structures, anomalies of the type that
motivated the volume correction have been detected. Before
the proposal of the volume correction, Garcı´a Bernal and
Garcı́a de la Torre (1981) used the cubic substitution for
these structures and tabulated results of various properties
for a number of geometries, which have been widely used
(Garcı́a de la Torre, 1989). When the volume correction was
applied to these structures (Garcı´a de la Torre and Carrasco,
1998) the results were not entirely satisfactory.

In the present work, prior analyses of the oligomeric
structures are complemented with shell-model calculations.
Although no exact results are available for these structures,
among the various strategies, the shell model and the cubic
substitution are probably the most accurate. Because the

TABLE 1 Intrinsic viscosity and rotational and translational coefficients for a dimer

Modeling Strategy
Hydrodynamic

Calculation
Volume

Correction f t,2
i /f t,1

i f t,2
' /f t,1

' ft,2/ft,1 f r,2
i /f r,1

i fr,2
' /fr,1

' fr,2/fr,1 [h]2/[h]1

Bead Rigorous NO 1.230 1.392 1.333 0.00 2.67 0.00 0.64
Bead Rigorous YES 1.230 1.392 1.333 2.00 4.67 3.23 1.64
Bead cubic substitution Rigorous NO 1.276 1.458 1.392 1.77 3.79 2.75 1.34
Smooth shell Rigorous NO 1.286 1.446 1.388 1.83 3.75 2.78 1.37
Smooth shell Approximate NO — — 1.336 1.84 3.75 2.81 1.30
Exact — — 1.290 1.449 1.392 1.78 3.76 2.74 1.39

FIGURE 7 Percent deviation from the exact values of the results from
shell model calculations for ellipsoids. Cases with smooth and rough
models, and with rigorous and approximate hydrodynamics. (A) Transla-
tion friction coefficient. (B) Intrinsic viscosity. (C) Rotational friction
coefficient.
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shell model results still include some imperfections due to
extrapolation, we chose as the reference values in this case
those obtained for bead models with cubic substitution. To
illustrate the performance of the various methods, we just
consider a set of hexamers with different geometries and
therefore varying compactness, from a linear string to an
octahedron. The results for translation, rotation, and viscos-
ity are given in Table 2. It is well clear that the results from
the cubic substitution are almost identical to those from the
shell model with rigorous hydrodynamics, and we expect
that both, in turn, should be nearly exact. The plain (unsub-
stituted) bead model gives reasonable results for translation,
but shows the well-known failure for rotation and viscosity.

Finally, it is interesting to note that, unlike in the case of
the sphere or the ellipsoid, the shell model with approximate
hydrodynamics gives bad results in the present case. The
spherical particle and the octahedral array of spheres have in
common the fact of being isometric; tensors representing
physical quantities, like the inertia and friction tensors, have
three identical eigenvalues. In some regards the two parti-
cles have an aspect ratio of unity. However, the shell model
with approximate calculation performs well for the sphere
but badly for the octahedral array, perhaps because the
sphere and the ellipsoid are simple convex bodies, whereas
the oligomeric arrays are geometrically more complex, with
holes, convex, and concave parts, etc. Such structural fea-
tures may influence the performance of the shell model with
approximate hydrodynamics more than the overall aspect
ratio of the particle.

COMPUTER PROGRAMS

The computer program used to produce the objects in Figs.
2 and 3 is the POLYRAY raytracing software, which is of
public domain and can be found in the Internet (see, for
instance, http://ftp.tu-clausthal.de/pub/TEXT/mirror/pov-
ray/polyray).

The calculation of the basic properties (s, Dt, [h], the five
t, etc.) using rigorous hydrodynamics, the previously pub-
lished HYDRO (Garcı´a de la Torre et al., 1994) (file:
hydrox_x.f; where _x denotes the version number) com-
puter program can be used. During the course of this work
we have developed various computer program that are de-
scribed below.

APPROX (file: hydosu_x.f) is a subroutine that imple-
ments all the approximate double-sum formulas. Its input
data and the computed quantities are the same as those for
HYDRO. The use of the two subroutines is very similar.
Based on the experience obtained in the present work con-
cerning the volume correction, which was an integral part of
the calculations with older versions of HYDRO, we now
leave that correction as a user-decided option.

The most novel software pieces are several subroutines
intended to build shell models and the intermediate filling
models used for scattering-related properties. For an arbi-
trarily shaped particle, the intermediate filling model is built
by RFILL (file: rgfill_x.f), from which one can calculateRg

and the scattering-related properties using CAFILL (file:
cafill_x.f). The rough shell model to be used for hydrody-
namics is then built by using subroutine RSHELL (file:
rshell_x.f). We have even designed a program, SHELL-
SYM (file: shesym_x.f) that constructs smooth shell models
for the particular (although frequent and/or useful) case of
particles composed of axially symmetric blocks (spheres,
cylinders, or ellipsoids). Finally, we have a subroutine,
SH_RG_EX (file: extrap_x.for) which drives a model-
building subroutine along with HYDRO or APPROX, to
perform calculations with variables and extrapolate to the
shell model limit.

All those pieces of software are complemented by an-
other subroutine, SOLPRO, which takes the bead model
data and the basic properties calculated by HYDRO, and
calculates a number of more complex solution properties,
both dynamic quantities such as nuclear magnetic resonance

TABLE 2 Results for the hydrodynamic properties of hexameric arrays

Strategy Hexagon
Trigonal
Prism Octahedron Linear String

ft(6)/ft(1)
Cubic substitution 1.13 1.05 1.02 1.29
Bead model 1.07 (6) 0.96 (8) 0.93 (9) 1.26 (2)
Shell model, rigorous 1.13 (0) 1.04 (0) 1.02 (1) 1.30 (21)
Shell model, approximate 1.06 (6) 0.94 (11) 0.89 (13) 1.23 (5)

fr(6)/fr(1)
Cubic substitution 2.23 1.61 1.47 1.96
Bead model 2.67 (220) 2.11 (231) 2.22 (251) 2.42 (223)
Shell model, rigorous 2.21 (1) 1.60 (1) 1.46 (1) 2.01 (3)
Shell model, approximate 2.05 (8) 1.52 (6) 1.26 (14) 1.95 (1)

[h](6)/[h](1)
Cubic substitution 15.3 11.6 10.9 28.9
Bead model 18.9 (224) 16.5 (242) 15.9 (246) 30.9 (27)
Shell model, rigorous 15.6 (2) 11.5 (1) 11.1 (1) 28.9 (0)
Shell model, approximate 13.1 (14) 10.5 (9) 9.8 (10) 24.5 (15)

Results of the hexamers (6) are normalized to those of the monomer, i.e., of the constituting spheres.
The numbers in parentheses are the percent deviation from the cubic substitution results.
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relaxation, transient electric birefringence, etc.) as well as
other equilibrium properties, including scattering form fac-
tor, covolume, and many dimensionless combinations of
solution properties. More details on SOLPRO can be found
elsewhere (Garcı´a de la Torre et al., 1997, 1999).

All these software modules are of public domain and can
be downloaded from the Internet from our web site, http://
leonardo.fcu.um.es/macromol.

CONCLUSIONS

Summarizing the findings of the various parts of the present
study, the main conclusions are:

• Bead models in the strict sense (with few elements)
provide a convenient way of calculating hydrodynamic
properties. The volume correction provides an easy, in-
expensive way of correcting the Kirkwood–Riseman
treatment of rotation and viscosity.

• The hydrodynamic properties calculated from models of
the filling type can be extremely erroneous, particularly
when the volume correction is applied for rotation and
viscosity, and when the properties are calculated from the
approximate, double-sum formulas.

• The volume correction is not necessary for shell models.
• Shell-model calculations with the approximate double-

sum formulas give the exact results for a spherical par-
ticle. Thus the approximate methods (APPROX) with
shell-modeling is potentially useful for nearly spherical
particles, such as some globular proteins. Nonetheless, a
separate calculation with the rigorous procedures (HY-
DRO) should also be made, and the properties calculated
by double extrapolation, as in Fig. 4A andB and 5A andB.

These conclusions will provide a useful guidance for
refined or novel calculation of properties, by application of
the different model strategies, for a variety of structures
ranging from the regular shapes of the oligomeric, multisub-
unit proteins to the oddly shaped structures of bacteriophage.

We acknowledge support by grant PB96-1106 from the Direccio´n General
de Ensen˜anza Superior. B.C. is the recipient of a predoctoral fellowship
from the same source.
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