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Synopsis

The steady-state properties of flexible polymer chains in solutions undergoing elongational flow
have been studied using Brownian dynamics simulation. The coil-stretch transition is observed
when the elongational rate, é exceeds a certain critical value €, . In this work, we describe in detail
the simulation procedure and how to extract polymer dimensions, solution viscosity, and
birefringence from the trajectories. Preliminary simulations involving no hydrodynamic interaction
(HI) are used to check the simulation procedures by comparing their results with theoretical
predictions for such an (unphysical) case. Afterwards, simulations with fluctuating nonaveraged HI
are carried out to provide results comparable with experiments. After simulations with and without
intramolecular potential, we arrive at a most important conclusion: the chain length dependence of
€, is the same in theta conditions as in good solvent conditions. Combining &, with other solution
properties such as the longest relaxation time, the intrinsic viscosity, and the radius of gyration,
dimensionless compound quantities can be formulated. From our simulation results, we obtain
numerical values for such quantities, which include the HI effect, and which are therefore useful for
analyzing experimental data. © 1999 The Society of Rheology. [S0148-6055(99)00602-1]

I. INTRODUCTION

When dilute solutions of flexible-chain polymers are subjected to flow, the macromo-
lecular coils are deformed. Such deformation consists of orientation and/or stretching that
can be observed experimentally as a change in properties that depends on the overall size
of the coil or on the orientation of its segments. In some specific setups, it can be
accepted that the flow rate at which the macromolecule is exposed is approximately
constant in some region where it dwells for a sufficiently long time. The steady-state
behavior of the polymer chains in such homogeneous flows can be characterized in terms
of the dependence of the polymer properties on flow rate.

In shear flows, the dependence of polymer properties on flow rate ¥, is smooth: for
instance the mean square radius of gyration depends on 7'/2. However, the dependence is
remarkably different in elongational flows: as the elongational rate €, increases the prop-
erties remain nearly unchanged and continue to show the nonflow values, until a certain
critical value &, is reached. In the vicinity of &., the properties experience a very sharp,
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dramatic increase from the nonflow values, corresponding to the coil conformation,
reaching nearly the values corresponding to a fully stretched chain.

This coil—stretch transition was theoretically predicted in the classical paper by De
Gennes (1974), who improved and extended the pioneering work of Peterlin (1966).
Some details of the DeGennes theory were later clarified and shown to be consequences
of the mathematical approximation employed [Fan et al. (1989)]. The very interesting
features of this phenomenom prompted the development of laboratory setups in which the
transition could be experimentally observed [for a review of early studies, see the article
by Keller and Odell (1985)]. The early theory predicted a basic yet simple relationship
between the critical elongational rate and a characteristic time (the Rouse—Zimm longest
relaxation time) 71 of the chain: '

é'ch =~ 1, : (1)

However, the theory was based on a very simple dumbbell model, so that both its
qualitative aspects as well as the quantitative results, such as the precise value of €é.7
had to wait for more realistic chain models. A noteworthy result is the analytical expres-
sion of Bird et al. (1983) for arbitrarily long Rouse chains, which is a better conforma-
tional representation of a polymer chain than a simple dumbbell, although it still has
important defects: infinite extensibility and, particularly, (see below) the omission of
hydrodynamic interaction (HI).

In more recent years, the impossibility of deriving theoretically analytic resuits for
realistic chain models has motivated the development of simulation procedures by a
number of authors ([Acierno ef al. (1974); Saab and Dotson (1987); Liu (1989); Zylka
and Ottinger (1989); Larson (1990); Reese and Zimm (1990); van de Brule (1993); Hinch
(1994); Keunings (1997); Rallison (1997); Andrews et al. (1998a,1998b); Agarwal et al.
(1998)] to name just a few). More specifically, our group employed a Brownian dynamics
" algorithm with full inclusion of fluctuating hydrodynamic interaction, to simulate flexible
chain models that can embody a variety of features. Such an approach has been applied
to predict the properties in quiescent solutions [Garcia Bernal et al. (1991); Rey et al.
(1992)], in shear flow [Lépez Cascales et al. (1992b); Knudsen ef al. (1996a)] and .in
both steady [Lopez Cascales and Garcia de la Torre (1991b,1992b,1994)] and transient
[Rey et al. (1992); Knudsen ef al. (1996b)] elongational flows.

In the present work, we focus on the specific problem of steady, homogeneous elon-
gational flow, and attempt to determine precisely the dependence of the critical elonga-
tional rate on chain length, including rigorously effects such as fluctuating HI and ex-
- cluded volume. The dependence of €. on chain length N, or molecular weight M can be
expressed as a power law:

& o N% o« M°. (2)

For ideal chains, 71 « M>2, and so Eq. (2) predicts a = — 1.5 for theta solvents. If Eq.
(2) were valid for good solvent conditions, when 79 o« M 37 with v = 0.59 [Ohta et al.
(1982)], then we would obtain a =~ — 1.8 in good solvents. From the earliest experimen-
tal realizations of the elongational flow of dilute polymer solutions [Farrell ez al. (1980);
Fuller and Leal (1980); Odell et al. (1985); Atkins et al. (1986); Brestkin et al. (1986)],
a controversy has existed concerning the value of the scaling exponent a in Eq. (2). Such
controversy persists even after more recent experiments [Menasveta and Hoagland (1991,
1992); Narh et al. (1992); Nguyen et al. (1995)]. While various authors have found a
= —1.5 to be valid regardless of solvent quality, i.e., in both theta and good solvents
[Farrell et al. (1980); Fuller and Leal (1980); Keller and Odell (1985); Odell et al.
(1985); Menasveta and Hoagland (1991,1992); Narh ez al. (1992)], others have reported
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a ~ —1.8 in good solvents [Atkins er al. (1986); Brestkin et al. (1986); Nguyen et al.
(1995)]. Some theoretical considerations have predicted a different scaling exponent in
good solvents, ranging from a = —1.8 [Rabin (1985a)] to @ = —1.6 [Rabin et al.
(1985b)]. Interestingly, there is even a Monte Carlo simulation which predicts the abnor-
mal result of @ = —2.3 [Mansfield and Rakesh (1989)]. Evidently, the results are con-
flicting. Since excluded volume can easily be included in Brownian dynamics, another
reason for undertaking this work was to throw some light on this controversy using this
simulation technique. Actually, this possibility has been developed by Andrews et al.
(1998a) in a very recently published article, which, in several regards, is complemented
by our work.

From the chain length dependence of €., we attempt to determine a precise value for
the compound quantity é.7; [Eq. (1)], including rigorously the HI effect. We also for-
mulate and evaluate the combination of é, with the intrinsic viscosity and the combina-
tion newly proposed in this article of ¢, with the radius of gyration. We try to extract
experimental estimates for these combinations from measurements in the literature, and
compare them to our predictions.

Il. THEORY, MODELS, AND METHODS
A. Models for polymer and flow

We consider a dilute polymer solution in a steady, homogeneous elongational flow
with a velocity field given by

Uy = —3é; vy = -3y, U, = & 3)

which is an appropriate idealization of the field produced by the opposing jets device
pioneered by Keller, Odell, and co-workers [Pope and Keller (1978); Keller and Odell
(1985)].

The polymer molecules are modeled as bead-and-spring chains. The simplest model is
the Rouse chain composed of Gaussian (Hookean) springs with a force law F(Q) =
—HQ, where the spring constant is H = 3kT/b2, and b* = (QZ) is the mean square
spring length. The failure of the Gaussian chain to predict finite extensibility is removed
in an improved model, the chain of finitely extensible nonlinear elastic (FENE) springs.
In this model the spring force is given by Bird et al. (1987):

H
F(Q) = —WQ, )

Qmax

where Q is the spring vector and Q .« is the maximum spring length. At low elongation,
Eq. (4) reduces to the force law of the Hookean spring given above, where the spring
_constant is formulated now in terms of b2 = <Q2)0, i.e., the mean square spring length
at the limit of low elongation (in our case, in the absence of flow).

Polymer chains with intramolecular interactions can be simulated by Brownian dy-
namics by introducing interaction forces between non-neighboring beads, calculated from
appropriate intramolecular potentials. Physically, a most adequate choice is the Lennard-

Jones (LJ) potential,
12 6 ’
o o
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where r;; is the distance between beads i and %, and ey and o j are the Lennard-Jones
parameters.

Computationally, the LJ potential has a disadvantage in Brownian dynamics simula-
tion: due to its very steep behavior below oy y, the simulation is only feasible with quite
small time steps. This circumstance has been noted by several workers [Rey et al. (1992);
Andrews et al. (1998a)]. Thus, in order to account for excluded-volume (EV) effect in -
good-solvent conditions, we have employed a purely repulsive potential [L.opez Cascales
and Garcia de la Torre (1991a); Rey et al. (1992); Knudsen et al. (1996a)] given by

—ar; . =<
Ae Tkryp<r,

.V(rik) - 0 rg>r, ©)

This potential has the advantage of being ‘‘softer’’ than the LJ potential at short dis-
tances. With the proper choice of parameters, A = 75.0, @ = 4, and r, = 0.152 (in
reduced units), this potential has been shown to predict the proper power-law dependence
of polymer dimension on chain length, i.e., (r2)q or (s2)q proportional to N1,

Polymer chains in theta solvents can be in principle simulated as ‘‘ideal’’ chains in
which intramolecular interactions are simply absent. Chain dimensions and some simple
solution properties are adequately predicted in this way [Garcia de la Torre ef al. (1982);
Garcia Bernal et al. (1990)]. However, a correct description of the theta state requires the
simultaneous effect of balanced attractive and repulsive contributions. For an interesting
discussion in this regard, see Milchev et al. (1993). Thus, Andrews et al. (1998a) have
employed a Morse potential as proposed by Milchev et al. (1993). In this work, we have
recourse to the original Lennard-Jones potential, although at the cost of spending much
computing time. The parameterization of the LJ potential for various solvent conditions
has been described by Freire, Rey and their co-workers. For good solvents, the param-
eters are taken as ey = 0.1 and oy = 0.8, which reproduce properly the dependence of
polymer dimensions, intrinsic viscosity, and translational diffusion, <52) x N 1‘2, D,
o N™06, and [ 5] « NO8, approximately [Rey et al. (1987a)]. The theta state of LJ
chains has been found for €17 = 0.3 and oy = 0.8 [Freire et al. (1986b)], with propor-
tional properties (S2) « N, [5] « N%3, and D, « N~ 9 [Freire et al. (1986b)]. Finally,
following Andrews et al. (1998a), we include in our work the case of bad solvents, in the
so-called collapsed or globule conformation of the chains. This condition is described by
a LJ potential with e ;7 = 1.0 and o1y = 0.8 [Rey ef al. (1987b)].

B. Polymer properties

From the long trajectories generated as described below, we obtain polymer properties
as averages over values calculated for instantaneous conformations sampled along the
trajectory. More particularly, we consider the radius of gyration, the intrinsic elongational
viscosity, and the birefringence. The two former are calculated from well-known expres-
sions, but for the birefringence of FENE chains we have devised a specific procedure
which is described below.

The mean square radius of gyration (s?) can be expressed as

N _ 1 % 2
(57 = Ni=1<Si>’

where S; = r;—r,, with r; and r, being the position vector of bead i and of the center
of mass, respectively.
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The intrinsic elongational viscosity is defined as [ 7] = (%—37)/(3 n,c) at the limit
of very low mass concentration ¢, where # is the elongational viscosity of the solution
and 3 7 is the Trouton value for the elongational viscosity of the solvent, 7, being the
solvent shear viscosity. From the Kramers form of the stress tensor [Bird ez al. (1987)],
and recalling that the number concentration of the polymer is n = ¢N4 /M, where M is
the molecular weight, we obtain:

[7]

Ny

VA
=3 775M€J§1 (FiQi—FiQ)). ™
The property most commonly used to monitor the coil-stretch transition is birefrin-
gence An, which we intend to describe by taking into account the finite extensibility of
the subchains that comprise the molecule, i.e., the FENE springs in the model. The
optical anisotropy of the polymer subchains represented by the springs increases as they
stretch, but reaches a finite limit, as the FENE spring elongation does. As a consequence,
the whole chain has a limiting or maximum birefringence Ano. In the relationship
between anisotropy and elongation [Treloar (1975)], the inverse Langevin function takes
place in a similar manner as in the force—elongation relationship. In the latter case, a
simplifying approximation for the inverse Langevin function leads to the FENE spring
law. Although some authors [Carrington et al. (1997)] have employed a different, more
accurate approximation in the anisotropy—elongation relationship, the coherence between
the two treatments requires the use of the same approximation. Then, the resulting ex-

pression for the birefringence is [Kobe and Wiest (1993)]:

An 1 5
Ar,  (ON- 1>QmjZ (003 ©

Actually, this expression has been used in previous studies of birefringence of bead
and spring chains [Kobe and Wiest (1993); Andrews et al. (1998a), and (1998b)].

For the internal programming of the Brownian dynamics simulation and the presenta-
tion of results, it is convenient to employ reduced, dimensionless quantities (denoted
hereafter with an asterisk). Dimensions, energy and force are reduced by b, kT, and kT/b,
respectively, and reduced time is given by

* = t({KT). )
The elongétional rate is made dimensionless recalling that it is a reciprocal of time:

& = YKT). (10)

* In dimensionless reduced form, (s*2) = (s2)/b? and

1\ 6mo* V!
(7" = (5) &, (O FOP), (1)
where o* = ¢/b. Finally, we note that the ratio An/Anc, is obviously dimensionless.

C. Existing theories: combination of critical elongational rate and longest
relaxation time

.The simple free-draining description, in which HI is neglected, has. the virtue of
providing analytical results for the case of the Gaussian chain, with Hookean springs. For
example, the end-to-end distance is given by [Bird er al. (1983); Lopez Cascales and
Garcia de la Torre (1991b)]:
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() B NG Nl cos’ M

- L =14 X 12
Nb? N(N+1) m—Zl,odd sin M(sm M+7\He)(s1n M—\gé)’ (12

where M = ma/2N and Ay = (1/12)( é’bz/kT) From this expressmn it is easily seen
that (r2) goes to infinity when € reaches the critical value

&, = Ny sin® ), (13)
¢ 2N
which for sufficiently high N can be approximated by
kT 3
€ = ETF (l’lO—HI) (14)
or, in the reduced form defined. in Eq. (10),
& =37 N*  (no—HI). (15)

From the earliest studies of the elongational flow of polymer solutions, it has been a
common practice to relate the elongation rate é with the longest relaxation time 7
[Keller and Odell (1985)]. The product é7; is a dimensionless quantity that is sometimes
referred to as the Deborah number.

For the free-draining case, in the limit of large N, we have [Bird et al. (1987)]:

N |
n= _6772—];7—’ (no—HI) (16)
or
N2
= 52' (no—HI). (17)

Then the critical value of the product is:

€7 =3 (no—HI). (18)
Although in the analysis of experimental data they may be of no use or simply
misleading, the no-HI theoretical results are very useful for testing the simulation proce-
dures. For applications to real cases, the hydrodynamic interaction effect must be intro-
duced in some way. A previous, quantitative, theoretical, determination of é7; was made
by Magda et al. (1988), employing a procedure in which fluctuating hydrodynamic in-
-teraction is replaced by a configurational average. Furthermore, the 7; value to which
they refer is that obtained with the preaveraging approximation. These authors found that
the coil—stretch transition takes place when é/Ag = 2, where A I~ 471, 71 being the
Zimm birefringence viscoelastic relaxation time. Their precise numerical values are é
= 2.17\¢ and )\0_ = 4.17;, which y1e1d (€c:T)pre = 0.53, where the notation (...)pre
stands for preaveraging.
In the presentation and discussion of results for €.7; one must be careful because of
a possible confusion over 7;. From the earliest works [Zimm (1956), Stockmayer
(1967)] it has been known that two alternative forms of the relaxation times can be
formulated, one referring to the relaxation times that determine dielectric relaxation and
denoted as 7-,'c , following Stockmayer (1967), while the other form of the relaxation times
is involved in birefringence and viscoelasticity, which we denote as 73, following Zimm
(1956). Our 7 is the longest of the birefringence/viscoelastic relaxation times. The T],C
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times are related to the time decay of the first-order Legendre polynomial of the angle
subtended by two successive orientations of some characteristic vector, separated by a
given time, while the 'r,'cs are those which take place in the decay of the second-order

Legendre polynomial. As a consequence, it follows that Ti = 27;. It is evident that the
two types of relaxation times can be confused because of notation. This happens even in
standard monographs: thus, Yamakawa (1971) adheres to the Zimm—Stockmayer nota-
tion that we have used, while Doi and Edwards (1986) employ 71 (unprimed) when
referring to the dielectric relaxation times.

D. Brownian dynamics simulation

The dynamics of the polymer chains is monitored from trajectories of individual
molecules obtained by Brownian dynamics simulation. We employ a modification of the
Ermak and McCammon algorithm [Ermak and McCammon (1978)] proposed by Iniesta
and Garcia de la Torre (1990) that includes the displacement due to solvent flow. Each
step is taken twice, and the positions of the beads r; after the time step At are calculated
from the previous ones, r?, according to the following equations:

At '
¢ = r0+EDO.FO+At(VrD)O+AtVO+RO, (19)
and

0 Arl 0 0 (AR 1 ' 0 1 0 ' '
r=r +E"“2—(D -F°+D"-F )+At§[(VrD) +(V,D) ]+At§(v +v')+R’,

(20)

where r is the generalized (3N dimensional) position vector containing the three coordi-
nates of the position vectors r; of all the beads. Similarly F and v are the generalized
vectors for forces and flow velocities at r. Note that the forces at each bead are the
tesultants of the forces at the springs attached to that bead, ie., F; = —F(Q;_1)
+F(Q;), except F1 = F(Qq), and Fy = —F(Qy—1). D is the generalized 3N X3N
diffusion tensor. Equation (19) is for the predictor substep, which takes into account the
quantities corresponding to the previous conformation r¥ denoted by the O superscript. In
this step, an estimate r’ of the following conformation is obtained, and the necessary
quantities are evaluated. The next substep is the corrector, which is calculated as indi-
cated in Eq. (20), again from the previous conformation r®, but using quantities that are
the mean of those at r° and r’. Although the step in our predictor—corrector procedure is
equivalent to two Ermak—~McCammon steps and subsequently takes about twice the CPU
time of the latter, longer time steps are possible and lead to an increase in efficiency
[Chirico and Langowski (1992); Ottinger (1996)]. Owing to its pseudosecond-order con-
struction, the algorithm is particularly suited for systems with linear flow fields and forces
like those in the present problem.

A proper description of polymer hydrodynamics requires an adequate representation
of HI. For this purpose the diffusion tensor is expressed in terms of the Oseen tensor T;;
as D;; = kTT;; [Yamakawa (1971)], which is evaluated for each conformation. Thus,
our description of HI is properly fluctuating, thus avoiding any type of averaging ap-
proximation. If hydrodynamic interaction is neglected, the results may not be of applica-
tion to dilute polymer solutions, as it is in our case. However, the no-HI case is still of
interest since simple analytical results are available from theory and can be used for
testing the simulation procedures. If HI is neglected, we set D;; = 0 in Egs. (19) and
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(20). For the bead friction we use a Stokes coefficient { = 67,0, where o
= 0.257b, which corresponds to a HI parameter 2* = 0.25.

E. Simulation procedures

The very strong effect of the coil—stretch transition on polymer properties means that
it is easy to determine é. by computer simulation. The case of Gaussian chains is par-
ticularly simple because they are infinitely extensible. In a computer experiment, a single
Gaussian chain, which is initially in a coiled conformation, is submitted to an elonga-
tional flow of fixed €, and some property (say, the end-to-end distance or the gyration
radius) is monitored during the simulation. If ¢ > ¢&,., the chain will sooner or later
suffer transition and will rapidly and limitlessly grow in size. In a short simulation time
the Cartesian coordinates increase so sharply that an overflow results with the subsequent
abortion of the computer execution. Thus €. can be bracketed in a series of simulation
experiments with different € in which the computer program is either running for a
sufficiently long time or aborts by overflow. While refining the determination, i.e., very
close to €., the single-molecule run was repeated a few times, with different starting
conformations. This procedure was iterated, thus reducing the interval in which &, is
located until it has a width smaller than 5%. '

For FENE chains a similar strategy can be employed, although in this case the com-
puter program does not stop itself since dimensions and coordinates are always kept
limited. A practical criterion has to be imposed to check for coil—stretch transition. For
instance, we say that the transition is taking place if the end-to-end distance r reaches half
its limiting value for the fully extended chain rpa,/2 = (N— 1)Qax/2. We tried other
criteria for checking transition; for example, if chain dimensions are regarded in terms of
their order of magnitude (on a logarithmic scale), the criterion used may be that ln(rz)
reaches the mid value between In[(N— l)bz] and In[(N —l)erznax]. In practice, we found
that various transition criteria gave indistinguishable results for €., which is perhaps to
be expected given the extreme sharpness of the transition.

Besides determining €., in a second stage of our study we attempted to calculate the
variation of polymer properties with &, below é., and for FENE chains above é,.. For
this purpose, the properties of a chain were monitored during very long simulations with
fixed €. The heading portion of the trajectory was rejected in order to eliminate any
dependence on the initial conformation. This portion amounts to about one fifth of the
total trajectory length, and is sufficiently long to ensure that the molecule eventually
undergoes transition to the final state corresponding to the é value of the flow to which it
is submitted. For the conformations displayed by the molecule along the remaining length
of the trajectory, the polymer properties are calculated and averaged. In a steady-state
regime, this average over successive conformations of a single molecule is equivalent to
the instantaneous average over a sample of molecules. The number of conformations for
which the properties in Figs. 1-3 were evaluated is typically 50 000. The properties are
usually determined with errors of about 3%-5%, except the low-rate birefringence,
which as it is very close to zero is not important (the bar errors are not appreciably larger
than the size of the data points themselves, mostly in the logarithmic scales). Due to the
sharpness of the transition, such small errors do not affect the detection of €.

In some simulations with FENE chains the initial conformation was not a coil. Instead,
the simulation was started with very stretched conformations generated with springs
nearly aligned with the elongational direction of the flow and with spring lengths close to

Qmax-
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FIG. 1. Dimensionless mean square radius of gyration (s*2) vs dimensionless elongational rate ¢* for chains
of N = 20 with HI. Chains were started from the coil state (coil) or the stretched state (stretch). Chain springs
were Gaussian (Gauss) or FENE. Excluded volume was either absent (no-EV), represented by the soft potential

(EV) or by the Lennard-Jones potential (LJ).
L

ll. RESULTS AND DISCUSSION
A. Dependence of properties on elongational rate

Figure 1 displays the results for steady-state values of the mean square radius of -
gyration as a function of the applied elongational rate, for chains of 20 beads and hydro-
dynamic interaction. A number of cases have been included in Fig. 1. Thus, we consider
both FENE and Gaussian chains with the same <52)0 in the absence of flow. (Obviously,
the Gaussian chains cannot be studied beyond &.). Most simulations were started with the
molecule in a coil conformation, although we also carried out a few simulations in which

1e+5
0‘) o]
tet+d e
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= 1e+3 -
OQ
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© 2 oA o’
1e+1 : '
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FIG. 2. The same as in Fig. 1, for the dimensionless elongational inrinsic viscosity [ #1¥*.
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FIG. 3. Variation of the normalized biréfringence An*/An¥ with €*. Same code as in Fig. 1.

the initial conformation was close to full extension. The most important aspect of Fig. 1
is the inclusion of chains both without and with excluded-volume effects. The former
case represents in an approximate manner theta conditions (a more detailed representa-
tion will be used later), and for the latter case that represents good-solvent conditions,
two possibilities are considered, namely the Lennard-Jones and the soft types [Egs. (5)
and (6), respectively].

The steady-state view of the coil-stretch transition is clearly seen in Fig. 1 as a very
sharp change in <s2>, which increases by several orders of magnitude when the elonga-
tional rate reaches a critical value é;" = 0.13. The essential finding is that &, is the same
for chains with and without excluded volume. In the vicinity of €., the two families of
data merge into a single family. Above €., (s2) does not depend on EV, as one might
expect for a chain that is stretched by the flow itself, although the point to note is that the
transition takes place at the very same é,.

Moreover, €, is the same for infinitely (Gaussian) and finitely (FENE) extensible
chains. Although the behavior of the models above &, is determined by their extensibil-
ity, the value of €. is governed by the chain properties in the coiled (no-flow) state. We
also note that the steady-state values on both sides of €, are the same (as is to be
expected) regardless of whether the initial chain is coiled or stretched.

In Fig. 2 we display the elongational rate dependence of the intrinsic elongational
viscosity. We note the existence of a ‘‘Newtonian plateau’’ in which [ %] is independent
of flow rate. In-other regards, the aspect of Fig. 2 is the same as that for (s%) in Fig. 1.
Our Fig. 2 has the same aspect as a previous result of Kobe and Wiest (1993) for chains
without intramolecular interactions, and of Andrews et al. (1998a) for the good solvent
case. Finally, Fig. 3 depicts the results obtained for the birefringence An normalized to
the value of a totally stretched chain An, (so that as é — ©, An/An, — 1). Ignoring
other details, we focus on the main feature of Figs. 1-3, which is the sharp change in
properties when é* reaches the critical value é;" , which is the same for all the properties.

The essential conclusion from this part of our work is that the inclusion of intramo-
lecular interaction does not change €., whose value is the same for both theta and
excluded-volume, good solvent conditions. (It is also interesting to note that the two
different ways to account for excluded-volume effects in good solvent conditions give
equivalent results). As commented in Sec. I, there is some controversy between some
authors who obtain different scaling exponents, a = — 1.5 for theta solvents and — 1.5
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FIG. 4. Variation of the dimensionless critical elongational rate é;" with chain length N. Results for FENE
chains without EV..

> a > —1.8 in good solvents, and other authors who obtain the same value, a =
—1.5 for both theta and good solvents. Our conclusion gives support to the latter. This
situation will be explored in more detail later on.

B. Critical elongational rate: chain length dependence and combination
with the longest relaxation time

On the assumption that the critical elongational rate is practically the same for chains
with excluded-volume expansion as for ideal, Gaussian chains, we present now the re-
sults of the chain-length dependence for the latter case in which intramolecular interac-
tions are absent.

We first carried out a simulations to determine é;k without HI, in order to check the
result with the available theoretical results. The results presented in Fig. 4 give a scaling
relationship of éz‘ = (28.6x0.3)N ~2005=0.011 " which is in very good agreement with
the well-known result in the absence of HI, Eq. (15). Such accordance with theory lends
important support to our simulation procedures. Next, we carried out simulations includ-
ing HI. The results for éff are plotted versus N in Fig. 4. A least squares fit gives the
result ¥ = (14.1=1.1)N~ (155003 This is in agreement with the scaling law ob-
served for polymer chains in theta solvents, éf o M ™32 [Keller and Odell (1985);
Cathey and Fuller (1990)].

From the. earliest studies of the elongational flow of polymer solutions, it has been a
common practice to relate the elongation rate € with the longest relaxation time 71
[Keller and Odell (1985)]. The quantity é.7; can be also fully determined from our
Brownian dynamics simulation. In a previous work [Navarro et al. (1995)] the longest
relaxation time was obtained by Brownian dynamics simulation of the decay of electric
birefringence. In the no-HI case, we obtained 'r;" = CTN2, with C, = 0.0167, which
compared very well with C,. = 1/(6 %) = 0.0169 from Eq. (17). In the present work if
the chain length exponent is forced to be exactly 2, we obtain éf = CN =2 with C.
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= 28.8, which is in very good agreement with C, = 372 = 29.6 according to Eq. (15).
Also, combining the two simulations in the no-HI case, we have é.7; = 0.489, which is
in very good agreement with the theoretical results in Eq. {18). The goodness of the
agreement is particularly relevant if one conmsiders the rather complicated procedures
required for the simulation and that independent simulations for two properties are in-
volved. This, we feel, lends value to our Brownian dynamics simulation methodology.

" The nondraining limit, with the hydrodynamic interaction properly accounted for as
described above, is of relevance for practical use. In our simulations of electric birefrin-
gence decay [Navarro et al. (1995)], 7 = C.N*? with C, = 0.043. In the present
work, by setting the length dependence e'zk =CN"~ 32 (instead of —3/2 we obtained
—1.55), we obtain C, = 11.7. Combining the HI results of the two simulations, we
arrive at €,77 = 0.50 as our final result.

The above commented result obtained by Magda et al. (1988), (€.71)pre = 0.53, in
which hydrodynamic interaction was somehow preaveraged, is remarkably close to that
of our simulations, in which we have employed a fully fluctuating hydrodynamic inter-
action. Furthermore, in the absence of hydrodynamic interaction, the result was
(é:7T1)nom1 = 1/2. It is really noteworthy that although each of the two properties (&, and
71) depend strongly on HI, as manifested by different molecular-weight exponents, the
product (é,71) is practically independent of hydrodynamic interactions.

C. Compound quantities involving the critical elongational rate and the
intrinsic viscosity or the radius of gyration

In addition to the commonly employed combination é.71, other compound quantities
involving other simple solution properties can be formulated. One of them is the dimen-
sionless quantity » [Lopez Cascales and Garcia de la Torre (1991b)] combining € and the
zero-shear intrinsic viscosity [ 77]g. There is a simple relationship between the sum of the
series of relaxation times which gives the intrinsic viscosity and the longest one, 71. This
relationship reads

Myl

= T?}W

, 1)

where K., is a numerical constant. Thus, € and [ 7]y can be combined to form the
dimensionless quantity

My 7]
v=——e=énlK,,. (22)
N kT
If hydrodynamic interaction is neglected [Bird ez al. (1987)], we have
6M[ 1)o7
T =——— (no—HI) (23)
TN 4kT
and
Nao'N" HI) 24
v = 557 (10 (24)
so that

K,,= 6/7" = 0.609... (no—HI). (25)
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Combining Egs. (22), (25), and the no-HI result Eq. (18), we obtain

v, = 712 = 0.82... (no-HI). (26)
In a previous work [Navarro ef al. (1995)] the quantity combining the longest relax-
ation time and the intrinsic viscosity was obtained by Brownian dynamics simulation. In
the no-HI case we obtained K ,, = 0.60, which along with the present simulation result
é.71 = 0.489 gives v, = 0.815, which is in very good agreement with the theoretical
results in Eq. (26). Similarly in our simulations with hydrodynamic interaction [Navarro
et al. (1995)], we obtained K ,, = 0.50 and a combination of this with the present HI
value, é.71 = 0.50 gives v, = 1.01. It is again noteworthy that, as in the case of the
combination é.7;, the HI and no-HI results are rather close to each other.
In this article we propose one more dimensionless combination of €, with a simple

and common solution property, the unperturbed mean square radius of gyration, R,
— [2\12 ‘
= (s

RT
= 3 - .
NsRg€e

The definition has been made by analogy with two others dimensionless combinations of
71 with R, and with [7], that we defined in Navarro ez al. (1995):

K (27)

RT 7
Kg = ;S-R—_g, (28)
and
RT T
Kn] = %——Mm (29)

The following combination of K .z with the other compound quantities follows easily:

3/2
K 7R 6P 0 K 7R
ER = - = = ) (30)
(ec Tl) Ve K Ve

where @ is the most famous dimensionless, universal compound quantity, the Flory
constant involving the intrinsic viscosity and the radius of gyration

M 7]

We stress that Kz compound quantity (unlike to other combinations) is only mean-
ingful when hydrodynamic interaction is included. With the K g value from Navarrro
et al. (1995) and the results for &,7; obtained above, we arrive at K.z = 3.6X 102,

The numerical values of the various dimensionless quantities employed or derived in
this work, for both the no-HI and HI cases, are listed in Table 1. All our results for the
no-HI case compare very well with the results from analytic theories. This encouraging
finding lends strong support to our simulation and computational procedures. We have
attempted a comparison of the theoretical predictions for the numerical values of é.77,
ve, and K g in the HI case with some available experimental results. Nguyen et al.
(1995) have characterized the molecular weight dependence of &, of polystyrene in
various solvents, including the theta solvent decalin. From their results, Nguyen et al.
report B = €&, T{ to be B = 3 in decalin, which they claim to be distinct from the result
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TABLE I. Dimensionless compound quantities and constants.

No-HI Preave-HI HI Expt.

€Ty 5 = 050.. o 0.50% 150
Ve —77_2 = 0.80... s 1.01% 4.4°

12

6
Ky == 0.609... 0.42°¢ 054
K.gx10% e 176 - 1.8¢
®x10"%5 2.82° 253 25f
Kgx10~2 e 36% 23x0.88

0.95°
*This work.

"Nguyen et al. (1995).

“Zimm (1956), Yamakawa (1970), and Hearst (1962).

Navarro er al. (1995).

“Yamakawa (1970), Hearst (1962).

fGarcia de la Torre er al. (1984), Freire et al. (1986b) and references therein.
EMenasveta and Hoagland (1992).

obtained by Magda er al. (1988) (which is quite close to our simulation result, as we have
already described). The analysis of Nguyen ef al. is somehow affected by the above
mentioned existence of two notations and types of relaxation times. From Eq. (23) in
Nguyen et al. (1995) and the numerical values used in it, it is clear that their B combines
€. with the ‘‘dielectric’’ relaxation time 'r{ . Thus, we have é.7; = B/2 = 1.5 for poly-
styrene in decalin, which is to be compared with the theoretical and simulation result
€. 71 = 0.50. The prediction is correct in order of magnitude and the agreement is not as
poor as in the comparison with B, but still lacks quantitative value.

From the experiments of Nguyen et al., we have also tried to estimate v, . Using their
data in the theta solvent decalin, with 7, = 239mPas and [%] = 2.34
x1073M' 9B m3kg™! (M’ in kg/mol), we calculate [7] = 310cm’/g for M

= 107 g/mol. From their graphed dependence of €, on M we obtain [after correction
é.(app) with the 0.7 factor] the value é, = 1470 s~! for the same molecular weight.
Substituting these results into Eq. (22) we arrive at the result », = 4.4, in contrast with
the simulation result, v, = 1.01.

. For a similar analysis of K.z, we take the unperturbed dimensions of polystyrene
from the compilation of Kurata and Tsunashima (1988). The constant R /M /2, where.
Ry = (rz)(l)/ 2 is the mean square end-to-end distance takes on values that strongly depend
on the source; we estimate Ry/M 2 = (700+50) X 10~4 nm. This amounts to writing
Rgpo = 2.85X 107°M 2 (cm). Again, for polystyrene/decalin theta system, from Fig. 15
of Nguyen ez al. (1995), for what they call the ‘‘apparent’’ value, which shows a slope of
—1.5, we obtain graphically é.(app) = 6.7X 10133 =19 (s™1) which is converted to
é. = 4.7x108M 19 (s™1) by applying the correction factor 0.7 [Eq. (9) Nguyen et al.
(1995)]. The solvent viscosity of decalin is 7, = 0.0239 P. From these data, using Eq.
(27), we arrive at K¢z = 0.95%X 1024,

Menasveta and Hoagland (1992) measured €, of polystyrene in a good solvent, tolu-
ene, and found €, <« M~ 147%0.03 which is in agreement with our finding that the scal-
ing law is independent of solvent quality. If we fix a —3/2 scaling exponent, their data
[Table I in Menasveta and Hoagland (1992)], with M and €. as determined in their
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laboratory, are fitted by é, = (9.3+0.4) X 1034 =32, Combining this with molecular
weight dependence of R, g, e obtain Kz = (2.0+0.5)X 10** from Eq. (27).

In judging the agreement between our simulation results for é€,71, v, or K g and the
estimates from experimental work, one should bear in mind that these compound quan-
tities accumulates the possible experimental, theoretical, or computational deficiencies in
the various properties, €., 71, [7], and R g.,0»> €ach of which is the final result of elaborate
experimental or computational processes. Thus, we find the values obtained from simu-
lation agree with those derived from experimental data just in their order of magnitude,
but not quantitatively. On the experimental side, it would be important that all the in-
volved quantities, &;, 71, [7], and R, o were measured in the same laboratory, on the
polymer/solvent/temperature system, etc. The availability of the numerical data for the
dimensionless quantities reported in this work may stimulate such measurements.

D. Effect of solvent quality: excluded volume and intramolecular
interactions

As noted in Sec. I, one of the intentions of this work was to shed some light on the
existing controversy about the exponent a in the €. vs M relationship, Eq. (2): some
authors [Farrell ef al. (1980); Fuller and Leal (1980); Keller and Odell (1985); Odell
et al. (1985); Menasveta and Hoagland (1991,1992); Narh et al. (1992)], found that the
exponent is the same, a = — 1.5 for both theta solvents and good solvents, while others
claim that in good solvents the exponent is different ¢ ~ — 1.8 [Atkins et al. (1986);

Brestkin er al. (1986); Nguyen et al. (1995)]. According to our simulation results de-
scribed above, the reduced éj‘ is the same, and follows a N~ 1 dependency regardless of
the introduction of the excluded-volume interactions proper of good solvent conditions,
and this lends support to the first group of authors. The finding (using computer simula-
tion) that a is the same for good solvents as for theta solvents is not exclusive of our
work: in their very recent paper, Andrews et al. (1998a) carried out simulations without
hydrodynamic interaction, obtaining a = —2 in good solvents, which is the same expo-
nent predicted from the basic theory of the ideal chain [Eq. (14)] [Bird e al. (1983)].
Therefore, although their numerical value is influenced by the neglect of HI, it is clear
that such a value is the same in the two conditions.

Nonetheless, the importance of this problem prompted us to catry out a deeper study
of some aspects. First, in the previous calculations the theta state of the polymer mol-
ecules was represented by an ideal chain in which intramolecular interactions are simply
absent. However, the theta state actually corresponds to a balance between simultaneous
attractive and repulsive interactions [see for instance Rey et al. (1987b) or Milchev et al.
(1993)]. Another aspect concerns the possible behavior of chains in bad solvents, below
the theta state, where the polymer adopts the so-called collapsed or globular conforma-
tion. The information on this situation is scarce; Andrews et al. (1998a) have reported
some simulations without HI, and it may be interesting to complement their results here.

For the two purposes, the inclusion of intramolecular interactions via the LJ potential
is effective. In Sec. II of this article, we have described how the LJ potential is useful in
describing all the cases regarding solvent quality: good, theta, and bad solvent with ey ;

= 0.1, 0.3, and 1.0, respectively, and op; = 0.8 in all cases. Thus, we invested large
amounts of computer time carrying out Brownian dynamics simulations for LJ chains
with the various values of the solvent-quality parameter.

We carried out new determinations of é:‘ for varying N, with e;y = 0.1 and 0.3, with
and without HI. The results are represented in Fig. 5. The series of points with ey

= (.3, corresponding to the theta state, superimpose well with the data for the ideal
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FIG. 5. Values of the reduced critical elongational rate éz‘ plotted vs chain length N for various cases with and
without HI, and with choices for the intramolecular potential parameters corresponding to good and theta
solvents. .

chain. This demonstrates that, at least for the present purpose, there is no difference
between the two ways of representing polymers in theta solvents. The new results for the
good solvent conditions, €1y = 0.1, also superimpose well with the other two sets, fol-
lowing the same dependence with N. This confirms our previous finding that the depen-
dence of the reduced éff on N is the same, and therefore the exponent a must be the same
for good solvents as for theta solvents.

In our LJ representation of intramolecular interactions, we follow the common prac-
tice [Freire et al. (1986a,1986b); Rey et al. (19872,1987b); Milchev et al. (1993); An-
drews et al. (19984)] of gauging the solvent quality varying the potential parameter that
gives the attractive part erj in our case. The above results indicate that the critical
elongational rate is practically inseusitive to ery for low or moderate values of this
parameter. Then we proceeded carrying out more simulations with higher values of er,
reaching up to a value ey = 1.0, representative of the collapsed conformations in bad
solvents. The results, which are plotted in Fig. 6, provide a clear view of the influence of
the solvent quality parameter in éj‘ , which remains nearly unchanged in a wide region
that covers the good solvent and theta solvent cases, but increase noticeably beyond that
region, to reach values for the bad solvent case that are remarkably larger than for good
solvents. This trend is also observed in the no-HI results of Andrews et al. (1998a).

To ¢énd with the present discussion, we turn back to the combination of the critical
elongational rate with the longest relaxation time, in the form of the dimensionless
product é.71, where 7] is the longest relaxation time of the chain (Rouse time, without
HI; Zimm time with preaveraged HI, or a similar value with fluctuating HI). 7; is the
longest of a series of times that characterize the dynamics of a polymer chain in its
random coil conformation (as monitored, for instance, in dynamic light scattering of a
quiescent solution), or in very slightly deformed conformations produced by weak exter-
nal agents (shear flows or electric fields). All the workers, including ourselves, agree in
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FIG. 6. Reduced critical elongational rate é;" for chains with N = 37 beads, for various values of the ey
parameter of the LJ potential, covering ftom good to bad solvent conditions.

that excluded-volume effects in good solvent conditions produce a molecular weight
dependence of approximately 7; ~ M~ 1%, This is indeed predicted from renormaliza-
tion group theory [Ohta ef al. (1982)], and obtained from Brownian dynamics simulation
of molecular relaxation of dynamic light scattering [Rey er al. (1991)].

On the other hand the relationship é,7; =~ 1 (now we know that the product is about
0.5) has been given a somehow universal validity, so that some authors identify the
reciprocal of é, with 7 in all instances. Under such premises, one should expect €,
o« M _1‘8, ie., a =~ —1.8, and the result a ~ — 1.5 found by various experimental
workers and in our simulations would be considered to be contradictory.

In our opinion, the weakness in that rationale is the employment of the Rouse, Zimm
(or improved Zimm) longest relaxation time as the characteristic time to define a Deborah
number for elongational flow. Mathematically, the combination works well in theta con-
ditions because in such a'case é, « M~ L5 and T <M 13 with the obvious consequence
that é,7; is a constant. However, on physical grounds, 7; may not be an adequate
characteristic time in elongational flow. In the last years, the coil-stretch transition is
being considered mainly as a dynamic, time-dependent phenomenom [Wiest et al.
(1989); Liu (1989)]. The typical time of residence in the elongational flow required for a
given polymer molecule to go from the coiled conformation to the stretched one is much
longer than the Rouse~Zimm 7} ; this has been noticed in some computer simulations
[Lopez Cascales and Garcia dela Torre (1992a); Agarwal et al. (1998)], and mostly in the
remarkable experiments of Perkins et al. (1997). Also, the decay of properties from the
values of the stretched state to those of the coil is governed by the dynamics of the chain
in more or less stretched conformations, for which 7 is not meaningful. In summary, 7;
does not provide an adequate time scale for coil—stretch processes in elongational flow.
Therefore, the relevance that has been sometimes given to the combination é.7; is at
least doubtful, and its use in predictions may be misleading.
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IV. CONCLUDING REMARKS

In the present article, we have employed Brownian dynamics simulations to charac-
terize the steady-state behavior of model polymer chains in elongational flow. We de-
scribe the calculation of various polymer properties, including the extensional viscosity
and the optical birefringence. The critical elongational rate €&, is independent of whether
or not intramolecular interactions are present: &, is the same for excluded-volume chains
as for theta chains. After determining the chain-length dependence of é., we have been
able to obtain precise values for é,7 and other dimensionless compound quantities.

We should point out that the coil-stretch transition, in addition to the steady-state
aspect that we treat in this article, has dynamic aspects regarding how the properties
respond to the inception or cessation of the flow. This includes not only the time depen-
dence of bulk solution properties [Liu (1989); Wiest et al. (1989); Lopez Cascales and
Garcia de la Torre (1992a)], but also the individual response of each chain in the sample
[Perkins et al. (1997); Hernandez Cifre and Garcia de la Torre (1998)]. The Brownian
dynamics methodology employed in this work is a promising tool for simulating such
dynamic aspects.
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