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The behavior of polymer chains in steady, uniaxial elongational flows is studied using the 
Brownian dynamics simulation technique. Two different types of chain models are considered. 
One is the bead-and-spring Rouse chain and the other is a chain with breakable connectors 
that obey a Morse potential. The dynamics of Rouse chains and Morse chains is simulated 
both without and with hydrodynamic interaction (HI) between chain elements. From the 
simulated trajectories, steady-state properties such as chain dimensions and elongational 
viscosities are calculated. When HI is accounted for by using the RotnePrager-Yamakawa 
tensor, the calculated dimensions and viscosities are appreciably lower than when it is 
neglected. Carrying out simulations with varying elongational rate, it is possible to observe 
stretching and finally the fracture of the polymer chains. The critical elongational rate, 
corresponding to infinite elongation in the case of Rouse chains, and the fracture of the Morse 
chains has been characterized as a function of chain length. When the short length of the 
simulated chains is accounted for adequately, we find that the elongational rate needed for 
fracture &f scales with molecular weight LV as .&f a M - ‘. This result, which had already been 
predicted rigorously without HI, holds in practice as well when hydrodynamic interaction is 
considered. 

INTRODUCTION 
When dilute polymer solutions are subjected to elonga- 

tional flows with a sufficiently high stress rate, two salient 
phenomena show up.l One of them is the stretching of the 
otherwise coiled chains that is manifested as a sharp increase 
in some solution properties of the polymer such as chain 
dimensions and solution viscosity and birefringence. The 
other is the fracture of the polymer chains due to the me- 
chanical stress produced by the viscous drag. These pheno- 
mena are quite complex, not only in regard to the nature of 
the interaction between the polymer and the flowing sol- 
vent,2 but also because of the difficulties for the experimen- 
tal realization of conditions that could be described theoreti- 
cally with ease. 

Notwithstanding such difficulties, theoretical advances 
have been made in the prediction of simple relationships and 
the overall pictures for the coil-stretch transition3-5 and po- 
lymer fracture.“g However, analytical treatments and dir- 
ect computation are not usually sufficient when one wishes 
to consider a variety of complicating aspects, ranging from 
the hydrodynamic interaction (HI) effects in polymer dyna- 
mics to the nonlinear nature of macromolecular chains. l”,il 
In this regard, an appealing alternative which has been gain- 
ing popularity in the past years is the computer simulation of 
the Brownian dynamics of the chain. The simulation is made 
from the very first principles of Brownian motion and can be 
applied to problems of arbitrary complexity, both in the po- 
lymer model and in the solvent flow as well. The technique 
has been employed in a number of studies in shear flows, “-I9 

a1 TO whom correspondence should be addressed. 

while its use in the study of polymer conformation” and 
fracture2’ has been less frequent. 

A relevant-problem is that regarding the mechanical 
model employed to represent the polymer chain. The bead- 
and-spring model, or Rouse2r chain is used very often in 
polymer dynamics because of its tractability. However, for 
problems with solvent flow, it presents the drawback that the 
chain is infinitely stretchable. A model with finitely extensi- 
ble, nonlinear elastic (FENE) springs”,22 is a common al- 
ternative.5*20 However, the property of the FENE spring of 
being able to support an indefinitely large tension with finite 
elongation, without breaking, does not seems to be a good 
representation of the real behavior of a segment in a polymer 
chain. The KramersZ3 freely jointed chain of beads and rods 
is quite useful in several aspects,” but suffers from the same 
limitation. 

In this paper, we study a chain model having beads con- 
nected by springs that obey a Morse potential. At low ener- 
gies, i.e., in weak flows, the Morse springs execute small- 
amplitude oscillations about the equilibrium length, like a 
Fraenkel spring, ” and the model is similar to the Kramers 
freely jointed chain. On the other hand, in strong flows, if a 
spring obtains a given finite energy, it breaks. The Morse 
potential is indeed used in other grounds to represent both 
small-amplitude vibrations as well as dissociation of chemi- 
cal, covalent bonds. Our model is similarly expected to re- 
present steady-state properties and polymer fracture. Our 
second model is the Rouse chain. Being aware of its limita- 
tion, we consider the Rouse chain as a useful tool, first, for 
checking the performance of the simulation procedure by 
comparison with known results, and second, to provide a 
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reference for the discussion of the results of the other model 
(the Morse chain), which is substantially different. 

We also pay attention for both models to the effect of 
hydrodynamic interactions (HI). It is well known that the 
dynamics of polymer chains in a quiescent solvent is in- 
fluenced strongly by the HI effects, which modifies even the 
exponents in the scaling laws for properties vs molecular 
weight. On the other hand, in some aspects of flowing po- 
lymer solutions, HI has simply a quantitative influence, but 
it does not determine the overall behavior.‘,” The study of 
HI effects for polymers under flow may be relevant for 
further theoretical and simulation studies, which may be 
simplified greatly if such effects could be neglected. 

We present in this paper a Brownian dynamics simula- 
tion study or Rouse chains. and Morse chains of varying 
length, with and without hydrodynamic interaction effects, 
in steady elongational flow of the uniaxial type. Simulations 
are carried out at different elongational rates, which allow us 
to discuss how the polymer coil unravels in the flow, as mani- 
fested by its varying conformation. The true breakage beha- 
vior of the Morse chains and the critical (diverging) beha- 
vior of Rouse chains allows the characterization of the 
minimum elongation rate for polymer fracture. These re- 
sults are of relevance as the starting point for future studies 
of fracture kinetics and size distribution of the fragments. 

THEORY AND METHODS 
Elongational flow 

We consider a dilute polymer solution subjected to a 
steady elongational flow of the uniaxial type. The solvent 
velocity at a point with position vector r is 

v(r) = X-r, 

where the velocity gradient 31 is given by 

(1) 

( 

-l/2 O,O 
X= 0 - l/2 0 .& (2) 

0 0 1 1 

in terms of the elongational rate &. In this flow, the origin is a 
stagnation point. Following previous calculations and simu- 
lations,‘*” we have considered only the case of positive i. As 
kindly pointed out by a referee of this paper, our simulation 
program could be applied without change for negative i, 
thus covering the less common case of biaxial stretching 
flow. 

The elongational viscosity q is expressed from the stress 
tensor r asl’ 

ru - rxx = - ijk. (3) 

According to Trouton law, at low rates the elongational vis- 
cosity of the solvent is 3~,, where vs is its zero-shear-rate 
viscosity. In a polymer solution, the excess stress tensor due 
to the polymer chains is denoted as rP and the increase in 
elongational viscosity of the solution with respect to the sol- 
vent is 

y - 377= = - (4, - ‘TX. ),A (4) 

By analogy with shear flows, we employ an intrinsic elonga- 
tional viscosity given by 

[VI = (+j - 37L)/3w (5) 
in the limit of zero polymer concentration c. At very low 
elongational rate, [ ?i] coincides with the zero-shear-rate vis- 
cosity. 

Models 

A polymer chain is modeled as a string of N spherical 
elements, or beads of radius o joined by N - 1 connectors. 
We denote as ri the position vector for the beads 
(i = l,...,N), so that the bond vectors associated to the con- 
nectors are given by 

Q, = r, + 1 - r, (6) 
forj = l,...,N - 1. Although the two models considered in 
this work differ in the nature of the connectors, in both of 
them the orientations of the bonds are independent. As a 
consequence, if 1 E ( Q,“) is the root-mean-square bond 
length, then the mean square end-to-end distance (Y 2>o is 
given by 

(r2)o = (N- 1)12. (7) 
The friction coefficient of the beads is 5 = 6~~ (+. If the re- 
sults are expressed in a conveniently normalized form (see 
below), they are independent of the choice of gor [when the 
hydrodynamic interaction is neglected. In any case, we use 
in the simulations (T = 0.2566 ‘, where b ’ is the characteristic 
bond length of the model. This corresponds to a commonly 
used value for the hydrodynamic interaction parameter” 
h * = 0.25 (see Ref. 11, pp. 169, 170). 

For a chain of elastic springs, the contribution of the n 
polymer molecules to the stress tensor is (Ref. 11, Table 
15.2-1) 

~~ = .--n x (Fj”Q,> + (N- l)nk,7l, (8) 
j 

where Fj” is the connector force (not to be confused with 
the frictional force). Then, from Eqs. (4)) ( 5 ) , and ( 8 ) , the 
elongational intrinsic viscosity is calculated as 

Fjl = - W,4/377AW C NF/‘Q;) - @‘,“Qj”)). (9) 
i 

The above results apply to the two types of chain models 
considered in this work. We now describe their specific fea- 
tures. One of the models is the Rouse chain,‘l in which the 
bonds connecting the beads are Hookean springs with a 
stretching force Fj = - HQ,, where H is the force con- 
stant. A characteristic time for the Rouse chain is defined as 

1, = 5 /4H = mph “/2k, T, (10) 
where b ’ = 1. As is well known, the Hookean forces result in a 
Gaussian distribution for all the intrachain distances, in- 
cluding the Q, and the end-to-end distance. 

For a Rouse chain, Eq. ( 8) takes a simpler form, 

r,v = -“Hz (QjQ,> + W- l)nk,n 
/ 

(11) 

and Eq. (9) simplifies similarly. 
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The second model considered, which we call the Morse 
chain, is intended to remove some of the unphysical proper- 
ties of the Rouse chain. In this model, the potential energy 
for bond stretching is the Morse potential 

- v, =/j(l -e-B’Qrb))*, .c12) 
where b is now the equilibrium length and A and B are con- 
stants of the model. The instantaneous spring length may 
take any value from 0 to CQ . For low energies, the connectors 
behave as stiff springs that perform small amplitude vibra- 
tions and the model resembles a freely jointed chain of seg- 
ments with length b. The stretching force, obtained as the 
derivative of Eq. (12), 

Brownian dynamics simulation 
Brownian trajectories of the chains are simulated in the 

computer using the first-order algorithm of Ermak and 
MacCammon25 with a second-order modification.26 In the 
former version, the positionvector of a bead is obtained from 
the initial position ry after a Brownian step of duration At as 

ri = $ + (At/kT) C Do,-P, + Atv(ry) + pp. (14) 
k 

I;;. = - 2ABe -W2--M(1 -e-WQ,-b)) (13) 

varies nonlinearly with the bond length and finally the bond 
breaks when its potential reaches the dissociation energy 4. 
In Fig. 1, we plot the connector force vs the connector length 
for the.two models, along with that for another common 
model, the FENE spring,‘1*22 so that the differences can:be 
appreciated. 

The superscript 0 in ry and elsewhere refers to the instant at 
which the time step begins. D$ (i,k = l,...,N) is the ik block 
of the diffusion tensor. Fk -is the spring force on bead k: 
pk = - Ff’ + F =- 
]Fo,=F!$‘,.pf* 

!’ 1 except for l$ = - Pi” and 
1s a random vector with covariance equal to 

2AtD$. When we consider hydrodynamic interaction 
between the chain units, the Rotne-Prager-Yamakawa in- 
teraction tensor is used for DTk. If hydrodynamic interaction 
is neglected, Eq. ( 14) takes.a simpler form 

Actually, we made some simulations24 with a Lennard- 
Jones potential between beads (as in our study of shear 
flows’* ) intended to represent excluded volume effects. The 
simulation were very costly. and the results, apart from ob- 
vious quantitative differences, did .not show differences in 
qualitative aspects and trends. Therefore we just present 
here results obtained without excluded volume: - 

ri = r:! -t (At/<)F, + A@($) + pp. (15) 

Further details about the Brownian simulations are as in our 
previous papers.‘“” 

Dimensionless quantities 
In the simulation work and in the presentation of re- 

sults, it is useful to employ nondimensional quantities. This 
is accomplished dividing the basic quantities by the follow- 
ing factors: length b ’ (with b ’ 5 I for the Rouse model and 
b ‘3 b for the Morse chain); force k, Z and time (b ‘=/k, T. 
In these units, the characteristic time of the Rouse chain is 
X, = l/12. Thus the reduced elongational rate would be 
&* = (lb ‘*/k, T)&. In some instances, it is preferrable to 
reduce the elongational rate using a factor that depends on 
polymer length. Concretely we employ the reduced rate Y 
defined by 

Y = (AZ@, [qllJ/RT)h (16) 
We normalize the intrinsic viscosity as 

[ij]* = [f$M3/N,b, (17) 
while other workers*’ prefer to express the excess viscosity 
as 

60 -~ -.-- ~- 
I 

-F 

F F I 

40 
: Fraenkel FENE , 

20 

-20 

-40 IL--.-..I- - I_--_ L..-LA -L--L- 

o 1 2 3 4 5' 6 7 8. 9 10 11 12 

FIG. 1. A plot of the connector force vs connector length. The thin line is for 
the Rouse chain (Hookean connector). The thick line is for the Morse chain 
with A = 60, B = 0.7, and b = 1. b is marked as the distance for which 
F=OandF,,, takes place at Q = ABD. The dashed line is for a FENE 
chain with maximum elongation Q,, = 10 (all the parameters are in dimen- 
sionless form). The dotted line is for a Fraenkel spring with a force constant 
equal to UB *. 

(Fj - 377s)*=(?j - 3q,Vnk,T= [?j.l* (18) 
and sometimes it is presented as the ratio 

(V-317.) PiI r71* z-E------* 
3(770 - 7s) 17710 i.Slo* 

(19) 

With reduced quantities, the reduced rate is given by 

Y= ([a3;/67rc*)&*. (20) 
Hereafter, the elongational rate will be generically denoted 
as 1 and we will use &* when we refer specifically to the 
dimensionless form. 

Simulation procedure 

The Brownian trajectory of a polymer chain was started 
from a random conformation generated by a simple Monte 
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Carlo procedure in conditions corresponding to the absence 
of flow. Then a very large nu.mber of simulation steps (typi- 
cally 1.5~10~) of length At = 0.01 (Rouse) or 0.002 
(Morse) were taken. The moving averages needed for the 
calculation of the properties were monitored. During the 
first part of the trajectory, the averages increased from the 
no-flow values to reach the steady-state values. That part of 
the trajectory comprising about 5 x 10’ steps was rejected 
and the averages were recalculated for the remaining por- 
tion, where the chain is equilibrated with the flow. 

The choice of the time step At is a delicate point in Brow- 
nian dynamics simulation due to the compromise between 
discretization and trajectory length. Our value for Rouse 
chains At = 0.01 has been already proven to be effective.” 
Anyhow, we checked (for both models) that halving At and 
doubling the number of steps did not produce changes in the 
results significantly over the statistical uncertainties. This is 
in part due to the robustness of the second-order algor- 
ithm,% which allows longer steps than the Ermak-McCam- 
mon algorithm. The good agreement discussed below of 
Brownian dynamics simulation with all the available analy- 
tical or Monte Carlo results is a definitive check of our simu- 
lation procedure. 

For the parameters in the Morse potential, we take first 
A = 60 in units of kT. This dissociation energy is of the same 
order as the typical values for true chemical bonds. Second, 
we use B = 0.7, which is chosen so that the mean length I of 
the springs is only about 5% larger than the equilibrium 
length b. In regard to the Rouse model, the reduced value for 
the force constant is H = 3. 

RESULTS AND DISCUSSION 
Chain dimensions and conformation 

One of the few analytical results for properties of po- 
lymer chains in elongational flow is the equation of Bird et 
al.” for the end-to-end distance of Rouse chains in the ab- 
sence of HI 

(yl)=l+ UP 
+*Al NW+ 1) 

N-l 

xc 
cos2 M 

,n = 1 sin* M( sin’ M + il,~?) (sin’ M - A&) ’ 
odd 

(21) 

where M = (mr/2iV) 
Our results for (Y ‘) without HI for the Rouse chains 

(not shown) were found to be in excellent agreement, within 
a few percent, with Eq. (Z!l ). This confirms the validity of 
the simulation algorithm and the working conditions. Ac- 
cording to Eq. (2 1) , there is a critical rate .& at which the 
polymer dimensions increase indefinitely, as shown in Fig. 2. 
From Eq. (2 1) , the critical rate for uniaxial flow is 

kc = il g ’ sin* (n/2N) (22a) 

= (7?/4/l,)N -2 (N-+ co). (22b) 

Simulation results for Rouse chains with HI are also 
shown in Fig. 2. We note that for chains long enough 
(N> 3)) (r ‘)nr is smaller than (Y “) no nI . In other words, 
when HI is considered, the expansion in polymer dimensions 
due to the flow is not as great as that predicted when HI is 
neglected. This HI effect in elongational flows is in the same 
direction as that found for shear flows.“~** The HI/no HI 
ratios can be substantially different from unity, essentially 
because & is different. It is noteworthy that the HI effect for 
very short chains (N = 2,3) is the opposite. This also hap- 
pened in the case of shear flowsr6,” and illustrates that the 
use of the simplistic dumbbell model may be misleading, 
even for rough estimation. Summarizing the HI effects on 
polymer dimensions, we note that HI does not introduce 
qualitative differences in the behavior of (r “) vs i with just a 
noticeable decrease in dimensions for a given & and an in- 
crease in the elongational rate required for critical behavior. 

Simulation results for Morse chains with the parameters 
given above are presented in Fig. 3. The HI effect is again to 
decrease the elongational power of the flow. For instance, for 
N= 20 with (r ‘), = 22, when &* = 0.1 (which is at most 
half of the fracture limit kf; see below), we have 
(r2) no nI n 170, while (Y ‘)m ~60. There is a distinction 
between the & dependence of the dimensions of Rouse and 
Morse chains for large N While for the Rouse model the 
dimensions diverge asymptotically, for the Morse chain the 
trend indicates an incipient sigmoidal shape (compare the 
N = 20 data in Figs. 2 and 3) which is interrupted at some 
particular 2. Above this point, a steady state cannot be 
reached. 

1000 
ii- ---.-- ---__________1 

< r2 
100 
,I 

N=5 
N=8 

N= 12 N=3 
N=ZO 

I I I I XN=2 

lo/IrAgj j; 
L---- d 4 I 

0.1 ---LI-LiluLI IIILLuL_-U-U-J 01 

0.001 0.0 I 0.1 1 
f? I0 

FIG. 2. Values of (T’) for Rouse chains with different length vs the elonga- 
tional rate 2. (-1 is the analytical results without HI from Eq. 21. (X ) is 
the simulation results with HI (the HI conditions are always the Rotne- 
Prager-Yamakawa tensor and h * = 0.25). All the sets of data points ter- 
minate at CC. 
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10 N=3 

aesm Ap9Pm N-2 

1 ZYes .a Y-3 L!f3 a w I@ 

0.1 I, .L_LLLuJ-- I...... 1.... LLL.L .L. I I f I t 111 I I ! t I I ,I 

0.01 0.1 1 10 i 100 

FIG. 3. Values of (r “) for Morse chains with different length vs the elonga- 
tional rate i. (A) no HI; (Cl) HI. AI1 the sets ofdata points terminate at SC. 

The behavior of the Morse chain can be better under- 
stood regarding the situation for the single spring of a dumb- 
bell. If the dumbbell is oriented, making an anglefi with the 
elongation axis (z), then the tension force in the spring due 
to the flow is [Q&P2 (cos fl>, where P2 is the second Le- 
gendre polynomial. If the flow is strong enough, the dumb- 
bell will be nearly aligned with z and, roughly, Pz ra 1. Ob- 
viously, at larger 2, the force in the spring is larger. However, 
there is a maximum force that a Morse spring can withstand, 
corresponding to the maximum in the Fcurve in Fig. 1. The 
maximum value is F,,, = AB/2 and takes place for 
Q,,, = b + In 2/B. Thus, the maximum elongational rate is 

gf = Fm,, G-Qm, (234 

=AB/[2c(b + In 2/b)P,] (for N= 2). (23b) 

For C> gf, the spring cannot withstand the force due to the 
flow. No steady state is reached and the spring breaks. Thus 
&, determines the fracture limit. Numerical results for the 
Morse dumbbell with A = 60, B = 0.7, and b = 1 are given 
in Fig. 4. The highest elongational rate reachable in the si- 
mulation is 9 = 13.2, in reduced units. The prediction from 
Eq. (23) with PI = 0.74 (see Fig. 4) is 14.2, in very good 
agreement. 

Quantitative predictions are not possible for long 
chains, since we do not know a priori (without simulation) 
some aspects such as polymer orientation and the distribu- 
tion of the elongational stress along the chain. In any case, 
there is a limiting &f for each value of N that can be deter- 
mined carrying out simulations at varying e if g > Lf, there is 
simply a computational overflow. 

0.5 L 

0 

0 

0 

0 

0 
0 -A--L-l-I 8 I 1 II ’ ““‘L 

1.6 - 

<r’s+ 
8 

1.4 - 
0 

0 

1.2 0 - 
0 

0 0 0 

1 1 1 1 I ! IAIL. .I-.! 1 I I I I I I I , I 1 I I I ) 

0.1 1 10 
ti 

100 

FIG. 4. End-to-end distance (r2) and order parameter P2 z (P, (COST)) 
for a Morse dumbbell (N = 2) without HI vs h 

A more complete description of the conformation of the 
Morse chains in elongational flow can be made analyzing, 
together with (r’), other quantities determined by bond 
stretching and alignment. Thus, for N = 20, we present in 
Fig. 5 results for the rms bond lengths (Q To ), (Q : ), and 
{Qf ), corresponding to bonds 10 (central), 5 (at one 
quarter of contour length), and 2 (second from the end), as 
well as the order parameters (Pz (cos 8,, > ) , (P2 ( cos ,t?, > ) , 
and (P, (cos P, ) ) that measure the average alignment of 
the individual bonds with respect to the flow. [The solution 
birefringence29V30 would be given by an average of 
(P, (cos ,G”> ) over the bonds j. ] The results in Fig. 5 are 
from simulations without HI. It is clear that apart from 
quantitative differences, the trend observed with HI should 
be the same. These results complement those displayed in 
Fig. 4 for the lowest N. 

Relevant conclusions about the transition (with in- 
creasing &) from the coiled state to the stretched one can be 
drawn from Figs. 4 and 5. Essentially, we note that the large 
increase in polymer dimensions, as measured by (r ‘), is not 
due to bond stretching, since the <Q,‘)‘s increase 50% at 
most, but instead is due to the unfolding of the coil, as re- 
vealed by the increase in the (P, ) values. This increase is 
important itself, since it determines the onset of birefrin- 
gence which is observed experimentally.‘9*30 Therefore, the 
so-called coil-stretch transition (in the variation of proper- 
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FIG. 5. End-to-end distance (r’), order parameters P,,,=(P, (cosp,)), 
and mean square connector lengths (Q;) for various bondsj = 10,5, and 2 
of a Morse chain without HI vs & 

ties with &> is due to the orientation of the polymer segments 
in the direction of the flow. This picture is consistent with 
that found by Liu” in his study of FENE chains. 

We note that the order parameters and (r “) begin to 
grow at an elongation rate quite smaller than gf; for instance, 
for N = 20, the onset of tliat increase is at about i* ~0.05, 
while &J ~0.18. Thus the transition takes place over a broad 
range of &. For N = 20, the transition does not seem to be 
sharper that that for N = 2; With our results, we cannot 
establish a definite, critical value kC for the Morse chain that 
would characterize the coil-stretch transition. Only the 
elongational rate for fracture if is well defined for Morse 
chains. We do not see evidence for the type of transition 
predicted by de Gennes,3 which was not found either in a 
recent study of Kramers freely jointed chains.5 It is tempting 
to employ our simulation results to test the ‘Lyo-yo” hypoth- 
esis4 for the transition, which states that unfolding begins at 
the very center of the chain, while the ends remain rather 
coiled. Comparing the results in Fig. 5 for the various bonds 

j = 10,5, and 2 (j/N = 0.5,0.25, and O.l), we note that the 
alignment of bonds 10 and 5 proceeds at nearly the same 
pa&, while that of bond 2 begins at nearly the same & but is 
not so pronounced. Since we are not dealing with very long 
chains, we do not feel sure about whether this is an indication 
of the yo-yo mechanism, or just a spurious end effect. 

We wish to point out (because there is some confusion 
in this regard in the literature) that the coil-stretch transi- 
tion has been considered here in the elongational-rate depen- 
dence of the steady-state properties. A related, but not neces- 
sarily equivalent point of view is the dynamic one, based on 
the time dependence of the properties after the inception of 
the flow. This is the direction followed in previous work’ 
and in the~other part of our study.24 

Elongational viscosity 
We obtained the elongational viscosity of the two mo- 

dels as a function of & and for various iV, both without and 
with HI. The only previous analytical result of which we are 
aware is the equation of Bird et al.” for the Gaussian or 
Rouse dumbbell (N= 2) without HI I 

[VI* = 
hi-CT& 

(l-2/2&(1 +A#) ’ 
(24) 

where all the quantities are in dimensionless form and 
il, = l/12. Our results were found to be in excellent agree- 
ment with Eq. (24), as shown in Fig. 6, where results for 
other N’s are displayed. We note again the critical behavior 
of the Rouse model at &. The results with HI showed a 
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: y r 

;i: 1 ; 
N=2 

. ..k ; : 
x." , N=5 

N=3 
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FIG. 6. Elongational intrinsic viscosity [ v]* for Rouse chains of different 
length vs k (results without HI). ( X ) is the simulation results. (-) is the 
analytical result [ Eq. (24) ] for the dumbbell (N = 2). The dotted Iines just 
trace the trend of the data points. 
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completely similar trend. For N> 3, [?jlHI < [VI,, HI and 
&HI > ic,no HI * 

A parallel treatment was carried out for the Morse 
chains. The aspect of the variation of [ii] with &is complete- 
ly similar to that of (Y “), both with and without HI. 

As commented above, at low elongational rates, the 
elongational intrinsic viscosity should coincide with the 
zero-shear intrinsic viscosity. The latter can be evaluated 
analytically in the no HI case,” or the using the so-called 
rigid-body Monte Carlo treatment for chains with HI.31-33 
Then we compared our Brownian dynamics simulation re- 
sults for [ ?j] at low &with these alternative values of [s] 0. It 
must be recalled in this context that at low flow rates, the 
Brownian dynamics results for the viscosity are influenced 
largely by statistical errors [in such conditions, the right- 
hand side of Eq. (4) implies a difference between two very 
close values, which amplifies the simulation errors; this has 
been discussed already I6 1. Anyhow, the agreement in the 
comparison was good within the large uncertainties. 

As is done in the study of shear flows, the dependence of 
properties on flow strength can be analyzed employing the 
zero-rate viscosities in terms of the rate constant Y that com- 
bines&and [~],,,formulatedinEqs. (16) and (20).Exam- 
ples of this situation are given in Fig. 7 for Rouse chains with 
HI and in Fig. 8 for Morse chains without HI. In the other 

10 

<r*> I 
<r’2 : 

11 ;P wAoAan[B 1 

FIG. 7. Ratios of (?) and [v] to the values at zero-rate flow for Rouse 
chains with HI. (0) N= 8; (A) N= 12; (0) N= 20. 

two cases, the trend of the results is similar. The main point 
in this type of representation is whether the results for var- 
ious chain lengths cluster together, following a length-inde- 
pendent variation with Y. We note that this behavior is fol- 
lowed only qualitatively. Thus we note that the departure of 
the properties from the zero-flow values takes place very 
roughly at YS 1. One could conclude the existence of a criti- 
cal V= for the coil-stretch transition that would be close to 
that value. Regardless of the numerical value of v=, the scal- 
inglaw [q10 aM In for the intrinsic viscosity in theta chains 
(with Na M) would lead to i, a M - 3’2, as is indeed ob- 
served experimentally. ‘r6 The statistical quality of our data 
and mostly the short length of the chains simulated do not 
allow quantitative conclusions in this regard 

Power law for the critical elongational rate for polymer 
fracture 

As commented above, the critical elongational rate at 
which the polymer chain breaks cf is well defined and has 
been obtained in our simulations. Results are presented in a 
log-log plot vs N in Fig. 9, from which we can ascertain the 
possible power laws expressing the length, or molecular 

100 r- 
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FIG. 8. The same as in Fig. 7 for Morse chains without HI. Note that for a 
different model with different HI conditions, the aspect of the data is similar 
to that in Fig. 7. 
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FIG. 9. Values of Lr, (Rouse model) and 21, (Morse chain) vs chain length N 
(Cl) Rouse, without HI; (m) Rouse, with HI; (A) Morse, without HI; 
(A) Morse, with HI. The straight lines are those obtained to deduce the 
scaling laws. 

weight dependence of gY For the Rouse chain without HI, 
we find &f a. N - ‘.‘* and for the Morse chain without HI, the 
result is kJ a N - 1.g7. Thus for both models without HI, our 
results suggest a scaling law + cc M  - *. Indeed this depen- 
dence has been observed experimentally by Keller and co- 
workers1*6 (these authors used a cross-slots device for degra- 
dation experiments of polystyrene solutions in decaline that 
they claim to be dilute by any criteria). Anyhow, we should 
note that there is some controversy about the influence of the 
nature of the elongational flow on the scaling law.‘4 

On the other hand, when HI is included, as it should, 
our results (see Fig. 9) are &f cc N - 1.b5 for Rouse chains and 
i,. cc N - 1.6o for Morse chains, in disagreement with the ob- 
servations. At first sight, it was paradoxical that the proper 
inclusion of hydrodynamic interaction would destroy the 
agreement with experimental result. Ode11 et aL6 have re- 
ported a simple argument that gives a prediction of the scal- 
ing law. The polymer chain is supposed to be unraveled, in a 
linear conformation along axis z, before it breaks, but with 
connectors not appreciably stretched. Brownian motion can 
be approximately neglected in strong flow, so that the bead 
velocities are I(, = 0. The unperturbed (by HI) solvent velo- 
city is vy = iz,, where zi = b( 2i - N - 1)/2. Then the rela- 
tive bead velocity is 

ui - VP = S(2i - N- 1)/2. (25) 
The drag force at each bead is Fi(*) = - g( ui - up) and the 
total tension in the chai.n F = &Fj”’ is found to be 
P- &N ‘/S for high N. For the critical fracture rate gf, F 
reaches the value needed for the breakage of a connector 
F mnx. As b and F,,, are given constants, the argument of 
Ode11 et al.” gives finally if a N - 2. 

We undertook a similar prediction including HI. Em- 
ploying a rigorous Kirkwood-Riseman formalism,32*3s~36 
the drag forces at the beads are instead 

Fjh’ = - & C, (u, - v”,,, (26) 

where Cik is the ik 3 x 3 block of a friction supermatrix of 
dimension 3N x 3N Ce given as %  = &? - ‘, where the ik 
blocks of the mobility supermatrix 553 are 

~33, =f -‘&I + (1 -S,)T,. (27) 
In Eq. (27 ) , S, is Kronecker’s delta and T, is a hydrodyna- 
mic interaction Oseen tensor. Further details can be found 
elsewhere.3557 An analytical treatment of Eqs. (25)-(27) 
for large N leads to the final result that the total force depend 
on Nas Fa N*/ln N. Thus the correction with respect to the 
no HI case is just a In N factor. The same logarithmic correc- 
tion happens in the case of translational and rotational fric- 
tion coefficients and intrinsic viscosities of rods.37 Then, our 
result for the fracture rate, considering HI, is 

kfaN-*lnN. (28) 
When the chain is very long, the logarithmic term varies 
with Nmuch slower than N -*, so that over a discrete range 
of chain length, the effective scaling law must be &f a N - ’ or 
M  - *. We have also solved numerically Eqs. (25 )-( 27), us- 
ing standard computer algorithms with H135-37 as a function 
of N. A log-log plot of the numerical &f values vs N shows a 
slope of about 1.6, which explains the slope found in Fig. 9 
for the Brownian dynamics simulation results with HI. For 
N as high as 500, the observed slope is 1.8, which is still 
somewhat far from the limiting value. Therefore, the discre- 
pancy was due to the shortness of the simulated chains, 
which is unavoidable due to limitations in computational 
resources. Anyhow, we have been able to conclude that 
i,- a M  - * both for Rouse chains as well as for Morse chains. 
This theoretical result is valid rigorously when hydrodyna- 
mic result is neglected and effectively when hydrodynamic 
interaction is included. 
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